Search Results

You are looking at 1 - 10 of 77 items for :

  • "putrescine" x
Clear All
Restricted access

Fei Xiong, Jieren Liao, Yuanchun Ma, Yuhua Wang, Wanping Fang and Xujun Zhu

exogenous putrescine (Put) application and different salinity stress ( P < 0.05). Spd = spermidine; Spm = spermine. As shown in Fig. 1 , a substantial increase was observed in the Put content at the exogenous Put treatment by day 1, including the cultivar

Full access

Serge Gudin and Laurence Aréne

Flowers of two cultivars of Rosa hybrida were treated or not with putrescine before being pollinated from 2 to 8 days after anther emasculation. On both cultivars the 10-3 M putrescine treatment extended the effective pollination period, as shown by the best hip formation rates and mean number of seeds per hip. On one cultivar, the 10-5 M putrescine treatment increased fertilization efficiency (more hips obtained). The effect of putrescine was proportionally more important on the cultivar characterized by the highest stigmatic exudate pH. Putrescine also influenced in vitro pollen germination by increasing the length of emitted pollen tubes (10-3 and 10-5 M-putrescine) and the quantity of germinated pollen grains (10-5 M putrescine).

Restricted access

Yingmei Ma and Emily Merewitz

treatment ‘Penncross’ had significantly greater levels of Spm ( Fig. 4F ). Fig. 4. Content of free polyamines in leaves of creeping bentgrass ‘PsgSLTZ’ and ‘Penncross’ under salt stress. Putrescine content in ( A ) Expt. 1 and ( B ) Expt. 2. Spermidine

Full access

Weijie Jiang, Jie Bai, Xueyong Yang, Hongjun Yu and Yanpeng Liu

.0%, 62.2%, and 123.0% on days 2, 4, 6, and 8 of stress, respectively. Fig. 1. The effects of exogenous (A) abscisic acid (ABA), (B) putrescine (Put), and (C) 2,4-epibrassinolide (EBR) on leaf net photosynthetic rate (P n ) of the chilling-sensitive tomato

Free access

Yiran Li, Asuka Uchida, Akiha Abe, Akihiro Yamamoto, Tomonari Hirano and Hisato Kunitake

). The PAs, for example, putrescine (PUT), spermidine, and spermine (SPM), constitute a group of cell components that are precisely regulated. The biosynthesis and metabolism of PAs in plants have been well clarified. The oxidation of PAs can produce

Free access

Oded Sagee and Carol J. Lovatt

Maximum leaf NH3-NH4 + content and activity of the de novo arginine biosynthetic pathway occurred during the 1st week after transfer of 5-year-old rooted cuttings of the `Washington' navel orange (Citrus sinensis L. Osbeck) from 8 weeks of low-temperature stress [8-hour days (500 μmol·s-1·m-2) at 15 to 18C/16-hour nights at 10 to 13C]. Both aspects declined in parallel during the subsequent 4 weeks of 12-hour days (500 μmol·s-1·m-2) at 24 C/12-hour nights at 19C, which culminated in maximum bloom. Apical flowers of inflorescences initiated in response to 8 weeks of low-temperature stress exhibited maximum tissue concentrations of NH3-NH4 + and putrescine, and maximum activity of the de novo arginine biosynthetic pathway 1 week after transfer of the trees from the low-temperature induction to the higher temperature (flower buds were 7 × 5 mm, length/width). All three criteria decreased in parallel as flowers developed through Stage V (petal fall). In contrast, spermine concentration increased 7-fold during Stage IV of flower development (flower opening). By Stage V, ovaries contained about equal concentrations of putrescine, spermidine, and spermine. The activity of the de novo tyrosine biosynthetic pathway exhibited a pattern of change independent of flower NH3-NH4 + concentration. Observed changes were not due to increased organ weight or size and persisted when the data were expressed per milligram protein. The results of this study demonstrate that leaves and floral buds undergo parallel changes in N metabolism in response to low-temperature, stress-induced flowering and provide evidence that flower NH3-NH4 + content and putrescine synthesis via argine are metabolically correlated during flower development in C. sinensis.

Free access

Shiow Y. Wang and Miklos Faust

Polyamine, putrescine, spermidine, and spermine contents were determined during endodormancy in the buds of low-chilling-requiring `Anna' apples (Malus domestics Borkh.). Putrescine, spermidine, and spermine contents increased greatly in buds when their chilling requirement was satisfied. Polyamine biosynthetic inhibitors α -difluoromethylarginine (DFMA) or α -difluoromethylornithine (DFMO) reduced bud break and bud growth in concert with decreased polyamine titers. DFMO or DFMA did not inhibit bud break when it was applied to buds after they received the full chilling requirement. DFMO was more inhibitory than DFMA. The polyamine requirement was much higher for bud growth and bud development than during differentiation and bud break.

Free access

Yusheng Zheng and Carol J. Lovatt

Rough lemon seedlings [Citrus limon (L)] were hydroponically-cultured in complete Shive's nutrient solution (+K) or in Shive's nutrient solution with potassium omitted (-K) for a period of eight months. Fresh and dry weight of whole -K plants were reduced 4-fold (P<0.01). Nitrogen metabolism was monitored during this period in young, fully expanded leaves. Results showed that leaves of -K plants accumulated 2.5-fold more NH3-NH4 + than +K plants (P<0.01) and exhibited a concomitant increase in both activity of the de novo arginine biosynthetic pathway (2.5-fold) and free-arginine concentration (3.5-fold; P<0.001). Leaf proline content of -K plants increased 1.6-fold (P<0.05), while putrescine content increased 10-fold. Arginine decarboxylase activity was accelerated in -K plants.

Free access

Jin-Cheol Jeong, Robert K. Prange and Barbara J. Daniels-Lake

Potato (Solanum tuberosum L. `Russet Burbank' and `Shepody') tubers were exposed to continuous 4 μL·L-1 (166 μmol·m-3) ethylene in air. Treatment started after 8 weeks in storage and continued up to 33 weeks of storage at 9 °C over one (`Russet Burbank') or two (`Shepody') storage seasons. Tubers were sampled at 3 week (`Shepody') or 5 week (`Russet Burbank') intervals for polyamine content [putrescine, (PUT); spermidine, (SPD); and spermine, (SPM)] and sprout number and fresh weight per tuber. During the storage period, `Shepody' had higher concentrations of all three polyamines and a higher PUT/(SPD + SPM) ratio, compared with `Russet Burbank'. All three polyamines in both cultivars increased during storage, and the increase was more rapid in `Shepody' than in `Russet Burbank'. Regardless of cultivar and year, exposure to ethylene induced higher spermidine (SPD) content and a lower PUT/(SPD + SPM) ratio, compared with the air treatment. Sprouts appeared later and were smaller on ethylene-treated tubers and were more numerous in `Russet Burbank'. These long-term ethylene effects may be due, in part, to enhanced transformation of PUT to SPD.

Free access

Anwar G. Ali and Carol J. Lovatt

The ability of arginine (50 mM), putrescine (10 and 20 mM), and spermidine (10 and 20 mM) to enhance low temperature stressed-induced flowering of 5-year-old container-grown `Washington' navel orange trees was evaluated. The metabolites were applied to the foliage at the end of the 4-week low-temperature treatment of 8-h days at 10°C and 16-h nights at 7°C; the trees were then moved to warmer conditions.

All treatments had a positive effect on floral intensity. Putrescine (20 mM) and spermidine (10 mM) significantly increased (P = 0.05) total flower number and both the number and proportion of leafless inflorescences per tree. However, the number of floral shoots per tree, as well as the number of leafy inflorescences and number of vegetative shoots were not significantly influenced by the metabolites.

The results suggest that polyamines are important to the development of flowers, but not leaves, along the axis of the inflorescence.