Search Results

You are looking at 1 - 10 of 145 items for :

  • "postproduction" x
  • Refine by Access: All x
Clear All
Free access

Susan E. Trusty and William B. Miller

Abbreviations: DP, degree of polymerization DPP, days postproduction MCW, methanol: chloroform: water; TSC, total soluble carbohydrate. l Graduate Assistant. 2 Assistant Professor of Plant Sciences, to whom reprint requests should be addressed

Open access

Jiwoo Park and James E. Faust

of Agriculture, 2016 ). Three fertilizer delivery strategies were assessed for their potential to maintain adequate growth of petunia during greenhouse production while improving plant growth during the postproduction environment. The fertilizer

Free access

Terril A. Nell and Cor Vonk Noordegraaf

Three simulated transport temperatures (5, 11, or 17C) and durations. (3, 6, or 9 days) were used to evaluate the postproduction flowering patterns of miniature potted rose (Rosa sp) `Orange Rosamini'. The postproduction environment was maintained at 20 ± lC, 60% ± 5% relative humidity (RI-I), and an irradiance level, from cool-white fluorescent lamps, of 4.5 W·m-2 photosynthetically active radiation (PAR) for 12 hours daily to simulate conditions at the retail or consumer level. At 3 weeks postproduction, plants held for 9 days at 17C had the fewest buds showing color per plant. As temperature increased, there were fewer flowers per plant at weeks 2 and 3 of postproduction. In a second study, the effect of simulated transport (3 days at 5C vs. no transport) and postproduction irradiance level (1, 2, or 4 W·m-2 PAR) were evaluated over a 7-week postproduction period for `Orange Rosamini'. A three-way interaction was observed between simulated transport treatment, postproduction irradiance level, and time in postproduction for the number of open flowers per plant. Plants responded similarly at 1 and 2 W·m2 throughout the postproduction period, regardless of transport treatment; however, at 4 W·m-2 the plants of the no transport treatment had two to three open flowers each week up to week 6 of postproduction, while plants subjected to simulated transport followed the pattern of one and two open flowers for 0 to 3 weeks. Flowering then increased to three to four open flowers for the duration of the postproduction period. A third study involved two simulated transport treatments (3 days at SC vs. no transport), three postproduction irradiance levels (1, 2, and 4 W·m-2 PAR), and six miniature rose cultivars (`Orange Rosamini', `Red Minimo' `Sweet Rosamini', `Golden Rosamini', `Favorite Rosamini', and `White Rosamini'). Plants held at 1 or 2 W·m-2 for 3 weeks had no open flowers, while those held at 4 W·m-2 for 3 weeks had one to four open flowers, except `Sweet Rosamini', which had no open flowers with simulated transport.

Full access

Ben A. Bergmann, John M. Dole, and Ingram McCall

Factors that influence postharvest performance of potted poinsettia plants include cultivar, methods used during crop production, and postproduction handling. Cultivars have been improved steadily for aesthetic appeal, desirable production traits

Free access

Yanjun Guo, Terri Starman, and Charles Hall

costs and postharvest shrinkage are reduced. Poinsettia postproduction disorders include stem breakage, bract fading, leaf yellowing, bract edge burn (BEB, also known as bract necrosis), and bract bruising ( Ranch, 2012 ). Frequent irrigation with

Free access

Yanjun Guo, Terri Starman, and Charles Hall

causes the plant to lose its esthetic value, another cause of postharvest shrinkage for bedding and potted plants ( Starman et al., 2007 ). Inadequate irrigation is a major challenge during postproduction (shelf life) because irrigation systems are almost

Free access

Nicole L. Waterland, John J. Finer, and Michelle L. Jones

Floriculture crops may encounter harsh environmental conditions during shipping and while on display in retail stores. These poor postproduction environments can result in losses of 5% to 20% ( Armitage, 1993 ; Healy, 2009 ). A major cause of

Free access

Nicole L. Waterland, Craig A. Campbell, John J. Finer, and Michelle L. Jones

). Subsequently, the shipping and retailing of these plants may occur farther from the site of production, making proper postproduction care and handling increasingly important to ensure that customers receive the best quality plants ( Starman et al., 2007

Full access

Laurence C. Pallez, John M. Dole, and Brian E. Whipker

Sunflower (Helianthus annuus) has potential as a potted flowering plant due to short crop time, ease of propagation, and attractive flowers but postharvest life is short and plants can grow too tall. Days from sowing to anthesis differed significantly among six sunflower cultivars and ranged from 52 days for `Big Smile' to 86 days for `Elf' and `Pacino.' Height ranged from 6.0 inches (15.2 cm) for `Big Smile' to 14.9 inches (37.8 cm) for `Pacino', postproduction life ranged from 10 days for `Elf' and `Pacino' to 15 days for `Big Smile', and postproduction chlorosis ratings (1 to 5, with 5 the least) ranged from 5.0 for `Teddy Bear' to 4.4 for `Big Smile' after 5 days and 4.2 for `Teddy Bear' to 3.1 for `Sunspot' after 10 days. Promalin (a gibberellin and benzyladenine mixture) applied at 62.5 to 500 ppm (mg·L-1) was not commercially useful in extending postproduction life. Increasing pot size from 4 to 6 inches (10 to 15 cm) in diameter decreased postproduction life and plants in 5-inch-diameter (13 cm) pots were tallest. Pots with three plants flowered more quickly than those with one or five plants and pots with five plants had 1 day shorter postharvest life than those with one or three pots. All cultivars were facultative short-day plants, except for `Sundance Kid', which was day neutral. Storing potted sunflowers at 41 °F (5 °C) for 1 week did not reduce postproduction life, which was 11 to 12 d; however, 2 weeks of cold storage resulted in foliar damage. Three cultivars were found to be most suitable for pot production, `Elf', `Pacino' and `Teddy Bear', with one or three plants per 6-inch pot and sprayed with daminozide (B-Nine) at 8,000 ppm, or drenched with paclobutrazol (Bonzi) at 2 mg/pot (a.i.) (28,350 mg = 1.0 oz).

Free access

Terril A. Nell, Ria T. Leonard, A.A. De Hertogh, Lena Gallitano, and James E. Barret

Postproduction evaluations of two cultivars each of Amaryllis (Hippeastrum), calla lily, Freesia, lily, and paperwhite Narcissus were conducted under postproduction temperatures of 18, 21 and 24C and irradiance levels of 7 or 14 μmol·m-2·s-1. Amaryllis longevity ranged from 10 to 24 days, with an increase of 7 to 10 days at 18C. Excessive stem elongation occurred and was greatest at 24C. Calla lily longevity ranged from 33 to 68 days, with up to a 25-day increase at 18C and 14 μmol·m-2·s-1. Freesia lasted 24 to 33 days with an increase of 6 to 9 days at 18C. Leaf yellowing and stalk elongation was a common problem of Freesia, especially at 24C. Lilies lasted 17 to 31 days, with an increase of 9 to 11 days at 18C. Asiatic lilies were superior to Oriental lilies. Paperwhite Narcissus lasted 13 to 27 days, increasing up to 10 days at 18C. Cultivar differences in longevity and quality were observed. Optimum postproduction conditions ranged from 18 to 21C at an irradiance of 14 μmol·m-2·s-1 for best quality and longevity.