Search Results

You are looking at 1 - 10 of 149 items for :

  • "postemergence herbicides" x
  • Refine by Access: All x
Clear All
Full access

Orville C. Baldos, Joseph DeFrank, and Glenn Sakamoto

safe and cost-effective weed management protocol for seashore dropseed establishment, characterization of herbicide tolerance is essential. In this study, the tolerance of seashore dropseed to applications of pre- and postemergence herbicides and table

Free access

Lambert B. McCarty and Daniel L. Colvin

Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] is a turfgrass species traditionally adapted to low-rainfall areas that may incur unacceptable weed encroachment when grown in higher rainfall areas such as Florida. An experiment was performed to evaluate the tolerance of two new buffalograss cultivars, `Oasis' and `Prairie', to postemergence herbicides commonly used for grass, broadleaf, and sedge weed control. Twenty to 40 days were required for each cultivar to recover from treatment with asulam, MSMA, and sethoxydim (2.24, 2.24, and 0.56 kg-ha-l, respectively). Other herbicides used for postemergence grass weed control (metsulfuron, quinclorac, and diclofop at 0.017, 0.56, and 1.12 kg·ha-1, respectively) did not cause unacceptable buffalograss injury. Herbicides used for postemergence broadleaf weed control, triclopyr, 2,4-D, sulfometuron, dicamba (0.56, 1.12, 0.017, and 0.56 kg·ha-1, respectively), and a three-way combination of 2,4-D + dicamba + mecoprop (1.2 + 0.54 + 0.13 kg·ha-1), caused 20 to 30 days of unacceptable or marginally acceptable turfgrass quality, while 20 days were required for `Prairie' buffalograss to recover from atrazine treatments. `Oasis' buffalograss did not fully recover from 2,4-D or 2,4-D + dicamba + mecoprop through 40 days after treatment. Herbicides used for postemergence sedge control, bentazon and imazaquin, caused slightly reduced, but acceptable, levels of turf quality in both cultivars throughout the experiment. Chemical names used: 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine (atrazine); methyl[(4-aminophenyl)sulfonyl]carhamate (asulam); 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon); 3,6-dichloro-2-methoxybenzoic acid (dicamba); (±)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid (imazaquin); (±)-2-(4-chloro-2-methylphenoxy)propanoic acid (mecoprop); 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]benzoic acid (metsulfuron); monosodium salt of methylarsonic acid (MSMA); 2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one(sethoxydim); 2-[[[[(4,6-dimethylethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid (sulfometuron); [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid (triclopyr); (2,4-dichlorophenoxyl)acetic acid (2,4-D); 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac).

Free access

Bielinski M. Santos and Jose P. Morales-Payan

Trials were conducted under controlled conditions to determine the tolerance of young papaya plants (15 cm tall) to postemergence herbicides. Herbicides used were paraquat (1.68 Kg ai/Ha), MSMA (2.24 Kg ai/Ha), 2,4-D (4.26 Kg ai/Ha), bromoxynil (0.28 Kg ai/Ha), cyanazine (1.12 Kg ai/Ha), dimethenamid (1.12 Kg ai/Ha), endothal (0.56 Kg ai/Ha), imazameth (0.067 Kg ai/Ha), imazethapyr (0.028 Kg ai/Ha) lactofen (0.12 Kg ai/Ha), oxyfluorfen (0.03 Kg ai/Ha), acifluorfen (0.28 Kg ai/Ha), atrazine (2.24 Kg ai/Ha), and bentazon (1.12 Kg ai/Ha) as well as the untreated control. Atrazine, bentazon, cyanazine, imazemeth, imazethapyr, and dimethenamid did not cause phytotoxicity at the rates used and were equal to the untreated control. Other herbicides caused severe injuries followed by total death at 10 days after treatment.

Free access

Patrick E. McCullough, Stephen E. Hart, Shawn Askew, Peter H. Dernoeden, Zachary Reicher, and Dan Weisenberger

With the potential introduction of glyphosate-resistant kentucky bluegrass (GRKB) (Poa pratensis L.), postemergence herbicides must be identified for renovation from glyphosate-resistant stands or control escaped GRKB. Field experiments were conducted in Indiana, Maryland, New Jersey, and Virginia from July to September 2004 to investigate efficacy of postemergence herbicides for kentucky bluegrass control. Herbicides tested included clethodim at 0.28 kg·ha–1 (a.i.), fluazifop-p at 0.43 kg·ha–1 (a.i.), formasulfuron at 0.03 kg·ha–1 (a.i.), glufosinate at 1.12 kg·ha–1 (a.i.), glyphosate at 1.68 kg·ha–1 (a.i.), rimsulfuron at 0.03 kg·ha–1 (a.i.), sethoxydim at 0.53 kg·ha–1 (a.i.), and trifloxysulfuron at 0.03 kg·ha–1 (a.i.). One and two applications of each herbicide were applied to separate plots with the sequential applied 4 weeks after initial treatments (WAIT). Single applications of glyphosate completely controlled kentucky bluegrass 4 WAIT in Maryland, New Jersey, and Virginia. Glufosinate completely controlled kentucky bluegrass with one application in Maryland and New Jersey but single and sequential applications provided only 80% to 88% control in Indiana and Virginia. Foramsulfuron and rimsulfuron required sequential applications for complete kentucky bluegrass control 8 WAIT in New Jersey and Maryland but <82% control was obtained in Indiana and Virginia. Trifloxysulfuron controlled kentucky bluegrass 95% to 100% with single applications in Maryland, New Jersey, and Virginia. Single applications of clethodim, fluazifop, and sethoxydim provided minimal stand reductions but sequential applications controlled kentucky bluegrass 65% to 100%. Results suggest glufosinate and trifloxysulfuron have the greatest potential for controlling GRKB while other herbicides provided erratic control and require sequential applications.

Free access

Jack D. Fry and Ward S. Upham

In 1992 and 1993, 12 postemergence herbicide treatments were applied to field-grown buffalograss [Buchloe dactyloides (Nutt.) Engelm.] seedlings having 1 to 3 leaves and 2 to 4 tillers, respectively. The only herbicide treatments that did not cause plant injury at 1 or 2 weeks after treatment (WAT) or reduce turf coverage 4 or 6 WAT compared to nontreated plots (in 1992 or 1993) were (in kg·ha–1) 0.6 dithiopyr, 0.8 quinclorac, 2.2 MSMA, and 0.8 clorpyralid. Evaluated only in 1993, metsulfuron methyl (0.04 kg·ha–1) also caused no plant injury or reduction in coverage. Fenoxaprop-ethyl (0.2 kg·ha–1) caused severe plant injury and reduced coverage by >95% at 6 WAT. Dicamba reduced coverage by 11% at 6 WAT in 1992 but not 1993. The chemicals (in kg·ha–1) triclopyr (0.6), 2,4-D (0.8), triclopyr (1.1) + 2,4-D (2.8), 2,4-D (3.1) + triclopyr (0.3) + clorpyralid (0.2), and 2,4-D (2.0) + mecoprop (1.1) + dicamba (0.2) caused plant injury at 1 or 2 WAT in 1992 or 1993, but coverage was similar to that of nontreated turf by 6 WAT. Chemical names used: 3,6-dichloro-2-pyridinecarboxylic acid (clorpyralid); 3,6-dichloro-o-anisic acid (dicamba); (+/–)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); 3,5-pyridinedicarbothioic acid, 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-S,S-dimethyl ester (dithiopyr); 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate (fenoxaprop-ethyl); 2-(2,4-dichlorophenoxy)propionic acid (mecoprop); methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]amino]sulfonyl]benzoate (metsulfuron methyl); monosodium salt of methylarsonic acid (MSMA); 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac); [(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid (triclopyr); (2,4-dichlorophenoxy) acetic acid (2,4-D).

Full access

Orville C. Baldos, Joseph DeFrank, and Glenn Sakamoto

effective pre- and postemergence herbicides labeled for roadside use need to be identified. The studies in this preliminary and regional report characterized the response of tropical fimbry to the preemergence herbicides, oryzalin and oxadiazon, and to the

Free access

David A. Bender, J. Wayne Keeling, and Roland E. Roberts

Large weeds, particularly amaranths, are a serious impediment to mechanical harvesting of jalapeno peppers. Several herbicides were applied in 1998 and 1999 postemergence topical (PT) to commercial fields when peppers had four to six leaves, or postdirected (PD) with a shielded sprayer ≈1 month later, and evaluated for crop injury, weed control, and effects on yield. Treatments were applied to four-row plots 9 m long with a CO<subscript>2 backpack sprayer. PT treatments included pyrithiobac sodium at 0.036, 0.053, or 0.071 kg·ha–1 a.i. with nonionic surfactant or crop oil concentrate, metolachlor at 1.68 kg·ha–1 a.i., and oxyfluorfen at 0.14 or 0.28 kg·ha–1 a.i.. PD treatments consisted of the same rates of pyrithiobac sodium with nonionic surfactant only, and the same rates of oxyfluorfen. Pyrithiobac sodium PT caused significant chlorosis (reduction in SPAD chlorophyll) in new foliage and reduction in plant height after 1 week, but plants recovered with no effect on final plant height, chlorophyll, or yield. No significant difference was observed between the two adjuvants. Metolachlor had no measurable effect on pepper growth or yield. Oxyfluorfen PT killed young apical tissue and caused chlorosis of immature leaves. Plants recovered, but plant height was reduced by 14% to 28% and yield by 11% to 43%. PD treatments had no effect on pepper growth or yield. All herbicides provided adequate weed control under light pressure. Pyrithiobac sodium appears to have potential as a postemergence herbicide for control of amaranth in jalapeno peppers.

Free access

B. Jack Johnson

Three field experiments were conducted to determine if several preemergence and postemergence herbicides were safe to apply to creeping bentgrass (Agrostis stolonifera L. `Penncross') maintained at putting green height. When dithiopyr was applied at preemergence in late February or early March, the emulsifiable concentrate formulation (≤1.7 kg·ha-1) and granular formulation (≤1.1 kg·ha-1) did not reduce the quality or cover of creeping bentgrass. Applied at preemergence, bensulide plus oxadiazon at 6.7 + 1.7 kg·ha-1 and 13.4 + 3.4 kg·ha-1 reduced turfgrass quality for 2 to 3 weeks and 8 weeks after treatment, respectively. When MON 12051 and monosodium salt of methylarsonic acid (MSMA) (≤0.14 and ≤2.2 kg·ha-1, respectively) were applied at postemergence to creeping bentgrass in early June, the reduction in turfgrass quality varied from slight to moderate for 1 to 2 weeks, but turfgrass fully recovered with no effect on turfgrass cover. Quinclorac applied at postemergence in early June at ≥0.6 kg·ha-1 severely reduced creeping bentgrass quality and cover for ≥8 weeks. Diclofop at 0.6 kg·ha-1 applied to creeping bentgrass in June, July, or August maintained consistently higher quality and cover ratings than when applied at ≥1.1 kg·ha-1. Diclofop applied at 0.6 kg·ha-1 in June and repeated at the same rate in July reduced quality of creeping bentgrass less than when applied at 1.1 kg·ha-1 at any date. Chemical names used: O,O-bis (1-methylethyl) S-{2-[(phenylsulfonyl)amino]ethyl} phosphorodithioate (bensulide); (±)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); S,S-dimethyl-2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate (dithiopyr); methyl-5-{[(4,6-dimethoxy-2-pyrimidinyl)amino] carbonylaminosulfonyl}-3-chloro-1-methyl-1-H-pyrazol-4-carboxylate (MON 12051); 3-[2,4-dicloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); 3,7-dicloro-8-quinolinecarboxylic acid (quinclorac).

Free access

Christopher A. Proctor and Zachary J. Reicher

after postemergence herbicide treatments. Table 3. Percent purslane control in 2012 after postemergence herbicide treatments. Treatments in all research trials were arranged as a randomized complete block with three replications. The PRE study was a nine

Free access

Joe DeFrank* and James J.K. Leary

Two experiment were conducted in 1999 and 2000 to determine the response of orchid cultivars, grown as potted plants, to postemergence herbicides. In a film covered commercial nursery in Pahoa, four orchid cultivars were exposed to five sequential herbicide applications. The cultivars used were: Emma White (Dendrobium), Wildcat Blood Ruby, Volcano Queen (both Oncidiums), and SuFun Beauty (Vanda). The herbicides evaluated in this experiment were diuron and clopyralid applied at the anticipated (1×), 2×, and 4× use rate. Spray applications were made directly to crop foliage using a spray to wet application. The first application was applied on 11 Nov. 1999 with sequential applications made at 20-, 208-, 73-, and 69-day intervals for a total of five sprays. Orchid dry weight accumulation was not significantly reduced and all cultivars responded in a similar way. “Emma White” was the only cultivar to express abnormal growth to clopyralid in the form of J-shaped flower spikes and deformed flowers. The other three cultivars did not show any noticeable injury in response to any of the spray applications. A follow up experiment was conducted on the dry leeward coast of Oahu in a commercial saran house. Diuron was the only herbicide evaluated at one and four times the anticipated labeled use rate. The first application was made on 27 Apr. 2000 with sequential applications made at 50-, 21-, 70-, and 66-day intervals for a total of five sprays. The orchids selected for this experiment included nine Dendrobiums and one Vanda. Treatments were made directly to plant foliage using a spray to wet application. Whole plant dry weight accumulation of the 10 cultivars responded in a similar way and no herbicide treatment reduced dry weight accumulation in comparison to untreated plants.