Search Results

You are looking at 1 - 10 of 323 items for :

  • All content x
Clear All
Free access

J. Ordovás, E. Carmona, M.T. Moreno, and M.C. Ortega

The structure of cork (Quercus suber L.) bark presents a series of characteristics, suggesting that internal porosity is partly occluded. This study determined the porosity in the waste cork industry (C) and when such waste product had been composted during 4 (CC-4), 7 (CC-7), and 10.5 months (CC-10.5). The particle density of the intact and finely ground material differed significantly in all particle size ranges larger than 0.5 mm. The porosity of the cork substrates ranged from 80% to 94% of the total volume, according to granulometry and the degree of decomposition. However, large particles and less decomposed material with a high porosity had up to 10% of the total volume as occluded pores. The material's effective porosity varied slightly between the various particle sizes and degrees of decomposition, which ranged between 80% and 89%, having an average value of 85%. The ash content was highly correlated with the particle density of the finely ground material. Nevertheless, and due to occluded porosity, we cannot estimate the “effective porosity” from the ashes; therefore, we must resort to techniques that involve the displacement of a fluid, such as liquids or gas pycnometry or submersion.

Free access

William C. Fonteno

The determination of air and water holding capacities of horticultural substrates has been plagued by errors in measurement. The amount of air and water held at container capacity is influenced by the substrate and container height. Container capacity can be established through specific measurement. Air space, the difference between total porosity and container capacity, is usually poorly determined because of errors in total porosity measurement. Most researchers calculate total porosity (St) from the formula: St = 1-(ρbp), where ρb is the dry bulk density and ρp is the particle density. While bulk density is usually measured, particle density is not. Many times an average ρp of 2.65 Mg·m-3 for mineral soils is used. This sometimes creates large errors in calculating total porosity because the values of ρp for horticultural substrates range from 0.35 to 2.1 Mg·m-3. Total porosity can be measured with great accuracy at 0 kPa tension on a pressure plate apparatus, but is costly in equipment and time. Using a modified method of extraction and a new apparatus, using standard aluminum soil sampling cylinders, total porosity was measured with an 85% reduction in time end no decrease in accuracy.

Free access

Patrice Cannavo, Houda Hafdhi, and Jean-Charles Michel

an extensive list of abiotic factors that influence root growth in containers in their review. Among them, the physical properties of growing substrate are of great importance. The air-filled porosity and the water retention capacity and availability

Full access

Lu Zhang and Xiangyang Sun

elements in growing media ( Hongpakdee and Ruamrungsri, 2015 ). Because of its high porosity, CF can also reduce nutrient loss from growing media and thereby increase the uptake of nutrients by potted plants ( Koch and Barthlott, 2009 ). In addition, the

Free access

Mary Hockenberry Meyer and Bruce A. Cunliffe

Five ornamental grasses {little bluestem [Schizachyrium scoparium (Michx.) Nash], prairie dropseed [Sporobolus heterolepis (A. Gray) A. Gray], feather reedgrass [Calamagrostis ×acutiflora(Schrad.) DC. `Karl Foerster'], flamegrass (Miscanthus Anderss. `Purpurascens'), and variegated Japanese silvergrass (Miscanthus sinensisAnderss. `Variegatus')} were propagated by transplanting plugs or field divisions into 480-mL (10-cm round), 2.7-L (no. 1), and 6.2-L (no. 2) nursery containers with media ratios (v/v) of 0:1, 1:1, 2:1, 3:1, 1:0 rice hulls to sand, resulting in aeration porosities in 2.7-L containers of 5%, 12%, 22%, 28%, and 41%, respectively. Planting dates were between 28 Oct and 10 Nov. 1997; 30 Apr. and 7 May 1998; and 23-28 Oct. 1998 and 1-10 May 1999. Plants were covered with plastic and straw from the second week in November until the second week in April. Winter survival was evaluated 6 weeks after uncovering and for finished dates every 2 weeks thereafter. Species had a significant effect on overwintering survival, but container size and media did not. Sporobolus heterolepis and M. sinensis `Variegatus' had significantly lower overwintering survival than the other species. Container size significantly influenced growth; the 6.2-L containers had the highest values for all growth parameters. Growth response to media was a weak (nonsignificant) quadratic response, indicating for these species no clear trend for the best media aeration porosity.

Free access

Suzanne E. Allaire, Jean Caron, Isabelle Duchesne, Léon-Étienne Parent, and Jacques-André Rioux

A 2-year experiment with Prunus ×cistena sp. was conducted in pots using seven substrates composed of various proportions of primarily peat, compost and bark. Peat substrates significantly affected root and shoot dry weight. Water desorption characteristics and saturated hydraulic conductivity were measured in situ to estimate the pore tortuosity factor and the relative gas diffusion coefficient. The pH, electrical conductivity, C/N ratio, total and hydrolyzable N, as well as NO3 --N and NH4 +-N in solution were also measured. Estimates of the physical properties suggest that a lack of aeration limited plant growth. Plant growth was significantly correlated with both the gas relative diffusivity and the pore tortuosity factor. Among the chemical factors, pH and soil nitrate level were also correlated with plant growth. No significant correlation was found between plant growth and air-filled porosity or any other measured chemical properties. This study indicates that an index of gas-exchange dynamics could be a useful complementary diagnostic tool to guide substrate manufacturing.

Free access

Susan L. Steinberg, Gerard J. Kluitenberg, Scott B. Jones, Nihad E. Daidzic, Lakshmi N. Reddi, Ming Xiao, Markus Tuller, Rebecca M. Newman, Dani Or, and J. Iwan D. Alexander

Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g·cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was ≈65%, substantially lower than total porosity of ≈74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of ≈36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a ≈10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth.

Free access

Theo J. Blom and Brian D. Piott

High-volume top irrigation (Chapin) was compared to subirrigation (ebb and flow) using 15-cm-diameter (1.56 liter) pot-grown chrysanthemums [Dendranthema ×grandiflorum (Ramat.) Kitamura] with peatwool (50 peatmoss: 50 granulated rockwool) as the growing substrate. Preplant moisture contents (25%, 125%, and 250%, gravimetric) and compaction (0, 20, and 50 g·cm-2) of the peatwool were also studied. Shrinkage of growing substrate was large (>309'6 of pot volume) when peatwool in the pots was not compacted. Compaction reduced shrinkage and produced plants with larger leaves, more fresh weight, and longer stems than without preplant compaction. Drainable pore space, container capacity, and total porosity was not affected by compaction. The higher preplant moisture contents increased drainable pore space but had no effect on plant growth. Chapin-irrigated plants had significantly more fresh weight (+ 24%) at the pea-size bud stage than plants grown in the ebb-and-flow system. The difference in growth was similar at flowering but significant only at P = 0.08. Soluble salts concentration in the peatwool and foliar nutrient contents differed at flowering for the two irrigation systems.

Free access

Daniel C. Bowman, Richard Y. Evans, and J.L. Paul

Hydration of three commercial hydrophilic polyacrylamide gels in deionized water ranged from 340 to 420 g per gram of gel. Hydration was progressively inhibited by fertilizer salt concentrations from 0 to 20 meq·liter-1. Hydration of the gels in the presence of divalent cations (Ca2+ and Mg2+) and monovalent cations (K+ and NH4 +) at 20 meq·liter-1 was reduced to ≈10% and 20% of maximum, respectively. The valence of the accompanying anion did not affect hydration. Gel hydration was unaffected by urea over the range of 2 to 20 mm. Sequential rinses of the hydrated gels with deionized water completely reversed the inhibition due to the monovalent, but not the divalent, cations. The electroconductivity (EC) of the external solution increased during gel hydration. In the presence of fertilizer salts, the physical properties of a 2 redwood sawdust : 1 sand (v/v) container mix were unaffected by hydrophilic gel additions of 1.2 and 2.4 kg·m-3 (1 × and 2 × the recommended rate, respectively).

Free access

Adonal Gimenez Calbo and Amauri Alves Nery

Theory is presented for a differential mass-volume technique to measure non-destructively gas volume (Vg) changes, based only on the initial and final masses and volumes of an organ. Volume was measured using Archimedes' principle, but a non-invasive image analysis procedure could be an improvement. A reduction in Vg during the ripening of `Kada' tomato (Lycopersicon esculentum Mill) fruits, and irreversible Vg changes of 0.02, 0.29, 0.66, 1.2, and 1.3 ml for mature-green fruits compressed by 0, 2.5, 5.0, 7.5. and 10 mm for 5 minutes indicates the potential of this procedure. The method was compared with other methodologies using sweetpotato (Ipomea batatas L.) root segments subjected to vacuum water infiltration. The results were similar to the pycnometric method. The gasometric method underestimated Vg for roots in which the intercellular air volumes where blocked by the water used for infiltration, and large overestimation occurred with the traditional infiltration technique without correction for water absorption. Absolute Vg values were also estimated by semi-pycnometry (defined as the difference between the organ volume measured by water immersion and the organ volume without Vg measured with a pycnometer, after its maceration and elimination of gas bubbles with vacuum). Semi-pycnometry applied to tomato and bell pepper (Capsicum annuum L.) fruits, where the use of tissue segments limits the pycnometric method, and in sweetpotatoes, where the gasometric method overestimates Vg, generated results that were consistently similar to the differential mass-volume method.