Search Results

You are looking at 1 - 10 of 23 items for :

  • "pod development" x
  • All content x
Clear All
Free access

Boshou Liao and S.L. Kitto

In this study, the pod development dynamics and culture response in lima bean (Phaselous lunatus L.) were investigated. The average percentage of flowers to form pins was 17.5%. Pin length and width (mm), and weight (g) were all highly correlated with the days after pollination (DAP), with correlation coefficients of 0.98, 0.99 and 0.97, respectively. Pods grew relatively faster between 12 and 20 DAP, and reached their maximum length at about 35 DAP. Explants from pods of 5, 10, 15, 20, 25 DAP were cultured onto B5 medium containing BA (2 mg/L), kinetin (0.5 mg/L), 2,4-D (1 mg/L) or NAA (1 mg/L), sucrose (5%), and agar (0.7%). Soft calli only formed from the cut region on the seed coat or the suspensor attachment site of 5 and 10 DAP seeds. The 15 DAP explants were cultured as embryos (cotyledons 2 mm in length), and no callus was observed on them after 30 days of culture when they became brown. Twenty and 25 DAP embryos initiated calli and/or organ-like structures on the abaxial surface of cotyledons or embryo axes after 20 days of culture.

Free access

Maricelis Acevedo Román, Albeiro Molina Castañeda, Juan Carlos Angel Sánchez, Carlos Germán Muñoz, and James S. Beaver

The inheritance of resistance to bean golden yellow mosaic virus (BGYMV) was studied in common beans (Phaseolus vulgaris L.). The original cross was made between breeding line PR9556-158, which produces deformed pods when infected with BGYMV, and PR9556-171, which has normal pod development when inoculated with the virus. Pod type was evaluated on plants from six generations (parental lines, F1, F2, F2:3, F3:4, and backcrosses of the F1 to both parents) at mid-pod fill (R8), ≈65 days after planting. The segregation patterns from the F2, F2:3, F3:4, and backcross populations were consistent with the hypothesis that a single dominant gene confers normal pod development in PR9556-171. When inoculated with BGYMV, the deformed pods of PR9556-158 produced fewer seeds per pod than PR9556-171, resulting in lower seed yield. The gene symbol Bgp-1 has been assigned for this dominant resistance gene that controls the normal pod reaction to BGYMV in common bean.

Free access

Kyle M. VandenLangenberg, Paul C. Bethke, and James Nienhuis

pod development. Materials and Methods Plant material. A sample of six diverse common bean genotypes with differing culinary characteristics was evaluated in the summers of 2009 and 2010 ( Table 1 ). ‘Hystyle’ was selected as a modern large sieve

Open access

Wesley Gartner, Paul C. Bethke, Theodore J. Kisha, and James Nienhuis

for maturity, with the advantage that it reflects commercial marketability. Nevertheless, variation in rates of pod development as well as differences in pod shape (round, oblate, or flat) may confound comparisons among genotypes ( VandenLangenberg et

Full access

Ojwang J. David, Nyankanga O. Richard, Imungi Japheth, and Olanya O. Modesto

nonsignificant differences ( P > 0.05) in total rainfall among seasons within and across months. There were very minor variations in average ambient temperatures during the growth phases (vegetative, flowering, and pod development) of pigeon pea at both

Free access

Mohamed F. Mohamed and Dermot P. Coyne

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Smith) Dye (Xcp), is a serious disease of common beans (Phaseolus vulgaris L.). Three experiments were conducted twice in growth chambers at 26 ± 1C under short (10 hours light/14 hours dark) and long (16 hours light/8 hours dark) photoperiods to determine the influence of these photoperiods, flower bud removal, pod development, and pre- and post-inoculation photoperiods on the reaction of common beans to Xcp. In one test, `PC-50' (susceptible; S) flowered earlier and was more susceptible to Xcp under the short photoperiod than under the long photoperiod. BAC-6 (resistant; R) flowered at the same time under both photoperiods but developed rapid leaf chlorosis (RLC) (hypersensitive reaction) under long photoperiods. Flowering and disease reactions to Xcp by XAN-159 (R) were similar under both photoperiods. In a second test, daily removal of flower buds of `PC-50' decreased its susceptibility to Xcp under the short photoperiod. RLC of inoculated leaves of BAC-6 occurred during flowering and pod development under both photoperiods. XAN-159 expressed a high level of resistance to Xcp but showed RLC at later pod development stages. In a third test, the disease reaction of `PC-50' was affected by the particular photoperiod applied post-inoculation but was not influenced by the photoperiod applied before inoculation with Xcp. The implications of these results in breeding beans for resistance to Xcp are discussed.

Free access

C.L. Mackowiak, R.M. Wheeler, G.W. Stutte, N.C. Yorio, and L.M. Ruffe

Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 g·m-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

Free access

Charles S. Vavrina, N. Kokalis Burrell, and J. Kloepper

Bell pepper (Capsicum annuum) seedlings treated with various biological preparations exhibited increased root and shoot growth both in the greenhouse and during subsequent field establishment. Early fruit set and pod development showed signs of possible yield improvement by the treatments, but treatment differences were not apparent at first harvest. Data from subsequent harvests did show yield increases with some preparations. Treatment organisms appeared to activate or induce systemic resistance to bacterial spot (Xanthomonas campestris) infestation though not to the level shown by Actigard (Novartis). Crop/treatment response under soil solarization, fumigation, and compost amended conditions will be discussed.

Free access

Kirk W. Pomper and Michael A. Grusak

Understanding the mechanisms that regulate xylem transport of calcium (Ca) to snap bean (Phaseolus vulgaris L.) pods could allow approaches to increase pod Ca concentration and enhance the nutritional value of edible pods. Using the snap bean cultivars Hystyle and Labrador, which exhibit high and low pod Ca levels, respectively, we wished to determine whether there were differences between the two cultivars in stem xylem-sap Ca concentration and whether any differences in sap Ca concentration were related to differences in whole-plant water uptake or Ca import between the cultivars. Well-watered greenhouse-grown plants were placed in a growth chamber at a constant light intensity for an equilibration period. Pot weight loss was measured to determine whole-plant water use and stem xylem exudate was subsequently collected from the severed base of the shoot at flowering and at two stages of pod development. `Hystyle' displayed an exudate Ca concentration that was 50% higher than `Labrador' during pod development. `Labrador' showed 35% greater total water transport through the stem than `Hystyle'. `Labrador' plants also showed a significantly larger leaf area than `Hystyle' plants. Additional plants were used to determine total, long-term Ca influx. No difference was observed between cultivars in total Ca influx into the aerial portion of the plant. With whole-shoot Ca influx being equivalent and pod transpiration rate identical in the two cultivars, our results suggest that the higher whole-plant water uptake in `Labrador' led to a dilution of Ca concentration in the xylem stream and thus less total Ca was transported to developing pods, relative to that in `Hystyle'. Increased transpiration efficiency, enhanced root uptake of Ca, or reduced Ca sequestration in the xylem pathway of the stem could lead to an enhancement in pod Ca concentration in future cultivars of snap bean.

Free access

Michael A. Grusak and Kirk W. Pomper

Understanding the mechanisms that regulate xylem transport of calcium (Ca) to snap bean (Phaseolus vulgaris L.) pods could allow approaches to enhance pod Ca levels, and thereby improve the value of this food source for humans. Pods of greenhouse-grown plants of `Hystyle', `Labrador', `Tendergreen', `Green Crop', `BBL94', and `Gold Crop' were examined for stomatal density and rates of pod transpiration throughout pod development. Among pods ranging from 6 to 14 mm in diameter, Ca concentration and pod stomatal density varied inversely with increasing diameter in all cultivars; Ca concentration for pods of a given diameter also varied among cultivars. To assess the influence of pod stomatal density on pod transpiration, water loss was measured from detached pods of `Hystyle' and `Labrador', which have high and low pod stomatal densities, respectively. Pod transpiration rates were similar for the two cultivars, being ≈15% the rate measured in leaves under equivalent conditions, and comparable to rates of cuticular transpiration measured in leaves with closed stomates. These results suggest that pod stomates have no role, or have only a limited role, in pod transpiration. Pods of `Hystyle' and `Labrador' were placed in enclosures that maintained constant high- or low-humidity environments throughout pod development. For each cultivar, the high-humidity environment led to lower pod Ca concentrations, demonstrating that pod transpiration does have a significant impact on pod Ca accretion. However, `Hystyle' consistently exhibited higher pod Ca concentrations, relative to `Labrador', suggesting that differences in xylem sap Ca concentration may have been responsible for cultivar differences in pod Ca concentration.