Search Results

You are looking at 1 - 10 of 69 items for :

  • "plug plants" x
  • All content x
Clear All
Free access

Edward F. Durner

Two- to three-week-old `Sweet Charlie' strawberry (Fragaria ×ananassa Duch.) plug plants were conditioned [seven 9-hour short days without chilling (21 °C day/21 °C night) followed by seven 9-hour short days with chilling during the nyctoperiod (21 °C/12 °C night)] in September, then planted in a vertical hydroponic system for winter greenhouse production. Conditioned plugs produced significantly more fruit than did nonconditioned control plugs in January and February, but the difference was nonsignificant in March and April. Fruit yield increased linearly with height in the column (≈40 g/plant for every 30-cm increase in column height), probably because of increasing light level. When productivity is considered on an area basis (kg·m–2) and the column height effect on yield is accounted for, productivity over a 4.5-month period was 4.8 kg·m–2 for controls and 7.8 kg·m–2 for conditioned plugs. Conditioned plug plants offer the potential for increasing strawberry productivity and therefore the profitability of a winter greenhouse production system.

Free access

Brent L. Black, Harry J. Swartz, Gerald F. Deitzer, Bryan Butler, and Craig K. Chandler

The effect of altered red/far-red light environment on subsequent field performance of strawberry plug plants was tested. Two wavelength-selective plastic films were compared to neutral shade and full-sun control for conditioning `Chandler' strawberry plug plants before transplanting to a winter production system. The following year, plug plants of `Chandler', `Sweet Charlie', and `Allstar' were conditioned under the same treatments, with the addition of a continuous incandescent light and a short-day photoperiod, and plant performance was followed in the winter production system in Florida, a cold-climate annual hill system in Maryland, and in a low-input greenhouse production system. During the first year, the red light-filtering film slightly advanced fruiting in Florida. However, during the second year, the effect of the red light-filtering film was not significant, and a short-day treatment resulted in a greater reduction in runnering and increased early crown and flower development. For June-bearing strawberry plants maintained above 20 °C, altering the red/far-red environment did not consistently advance flowering.

Free access

Stan C. Hokanson, Fumiomi Takeda, John M. Enns, and Brent L. Black

Tissue-culture derived mother plants were established in a greenhouse suspended-gutter, nutrient-film technique growing system to evaluate runner tip productivity in the system. Effects of cultivar (`Allstar', `Chandler', `Latestar', `Northeaster', and USDA selection B 27) and duration (0, 1, or 2 months) of cold storage at 1 °C on tip viability, rooting success, and performance in fruit production were determined. The average number and weight of runner tips produced in the gutter production system, the capacity of runner tips to form cohesively rooted plug plants, and the number and length of adventitious roots produced by runner tips varied significantly among the cultivars and the three storage durations (0, 1, or 2 months). In the field, plants produced from runner tips stored for 2 months produced more runners than plants produced from freshly harvested runner tips. Crown number differed among the cultivars, but was not affected by cold storage treatment. No treatment differences were noted for the fruit harvest parameters evaluated. The results suggest that the transplants derived from mother plants grown in a greenhouse-based soilless system can be useful for annual plasticulture strawberry production in colder climates. Although long periods of cold storage of runner tips resulted in lower tip-to-transplant conversion ratios, field performance of transplants was not adversely affected. Additional research is needed to improve greenhouse strawberry production practices for increasing runner output and storage conditions that maintain the integrity of cold-stored runner tips. Without these improvements it is unlikely that soilless runner tip production will become a widely accepted technique that would replace the field nursery tip production method currently used by commercial strawberry propagators.

Full access

Gina E. Fernandez, Laura M. Butler, and Frank J. Louws

Strawberry (Fragaria × ananassa) `Chandler' plants from three sources were grown in the annual hill plasticulture system during two growing seasons (1996-97 and 1997-98). These trials evaluated the yield and vegetative performance of bareroot plants from Prince Edward Island and Ontario, Canada, and plug plant tips that were rooted in North Carolina but obtained from Ontario Canada. At the end of the season, total and marketable yields and fruit weight were not different among the plant sources. In addition, plants from all three plant sources produced equivalent yields on a weekly basis. Monthly whole plant harvests revealed that plant source did not affect leaf area, root, crown, leaf, flower or fruit dry weight during most of the growing season. In addition, plant growth parameters (specific leaf area, leaf area ratio, leaf weight ratio, and root to shoot ratio) in general did not differ among plant source in any 1 month. Plant growth did show shifts in dry weight allocation and leaf area as the season progressed that were uniform among plant sources, with the majority of the growth occurring in the spring in the two months prior to harvest. This uniformity among plant sources will allow future research to emphasize plant production practices that may reduce the risk of pest and disease problems or optimize production practices favored by growers.

Free access

Eric B. Bish, Daniel J. Cantliffe, and Craig K. Chandler

The demand for plug transplants by the Florida winter strawberry (Fragaria ×ananassa Duch.) industry may increase as water conservation during plant establishment becomes more important and the loss of methyl bromide fumigant makes the production of bare-root transplants more problematic. A study was conducted during the 1995-96 and 1996-97 seasons to determine the effect of container size and temperature conditioning on the plant growth and early season fruit yield of `Sweet Charlie' strawberry plants. Plants in containers of three sizes (75, 150, and 300 cm3) were grown in one of two temperature-controlled greenhouses (35 °C day/25 °C night or 25 °C day/15 °C night) for the 2 weeks just prior to transplanting into a fruiting field at Dover, Fla. Plants exposed to the 25/15 °C treatment had significantly higher average root dry weights at planting in 1995 and 1996 than did plants exposed to the 35/25 °C treatment. Plants exposed to the 25/15 °C treatment also had higher average fruit yields than the plants exposed to the 35/25 °C treatment (48% and 18% higher in 1995-96 and 1996-97, respectively). The effect of container size on plant growth and yield was variable. Plants propagated in the 150- and 300-cm3 containers tended to be larger (at planting) than the plants propagated in the 75-cm3 containers, but the larger container sizes did not result in consistently higher yields.

Free access

Brent L. Black

1 E-mail blackb@ba.ars.usda.gov . The author gratefully acknowledges student intern Michele Sumi for technical assistance, Davon Crest Farms for supplying strawberry plug plants, and BASF Corp. for providing prohexadione-Ca. Mention of a trademark

Free access

Bradley S. Sladek, Gerald M. Henry, and Dick L. Auld

zoysiagrass cover regardless of planting date and year. In 2006, zoysiagrass plugs spaced 15.2 cm apart and planted on 26 May exhibited the largest growth (74% cover) 6 WAP followed by 28 July (65% cover) and 20 June (58% cover) ( Table 2 ). Plugs planted on

Free access

Fumiomi Takeda, D. Michael Glenn, and Gary W. Stutte

The fall-to-winter strawberry production system in the mid-Atlantic coast region combines the new technologies for containerized nursery (plug) plant production with the protected culture system ( Takeda, 1999 ). Short-day strawberry cultivars

Full access

George Hochmuth, Dan Cantliffe, Craig Chandler, Craig Stanley, Eric Bish, Eric Waldo, Dan Legard, and John Duval

Strawberry (Fragaria ×ananassa) crops were transplanted in two seasons in central Florida with bare-root and containerized (plug) plants under three transplant establishment-period irrigation methods to evaluate crop fruiting responses and production economics associated with the various establishment systems. Irrigation was not required to establish plug transplants in the field. Early (first 2 months) fruit yield with nonirrigated plug plants was greater than early yield with sprinkler-irrigated bare-root plants (the current commercial system) in one of two seasons and equal in a second season. Total-season yields were similar in each season between the two establishment systems. Large or medium plug plants led to greatest early fruit yields in one season while large plug plants resulted in greatest early yield in a second season. Total yield was greatest with medium plants in one season and large plants in another season. The extra cost for the plug plant system was $1853/acre. In one out of two seasons there was increased net income amounting to $1142/acre due to greater early yield associated with the plug plant cultural system. Strawberry plug transplants showed promise for earlier and more profitable crops in addition to substantial savings in water used for plant establishment in the field. The ability to establish strawberry crops without irrigation will be important in areas where growers are required to reduce farm water consumption.

Full access

George Hochmuth, Dan Cantliffe, Craig Chandler, Craig Stanley, Eric Bish, Eric Waldo, Dan Legard, and John Duval

Experiments were conducted in two seasons in Dover, Fla. (central Florida), with bare-root and containerized (plug) strawberry (Fragaria ×ananassa) transplants to evaluate transplant establishment-period water use, plant growth, and flowering responses in the 3-week transplant establishment period. Strawberry plug plants were established with 290 gal/acre water applied only with the transplant at planting time, while 200,000 gal/acre from microjet or 1 million gal/acre of water from sprinkler irrigation were used to establish bare-root transplants. Root, shoot, and crown dry matter of plug plants rapidly increased during the establishment period, while there was a decline in leaf area and root and crown mass of bare-root plants, even with sprinkler or microjet irrigation. Water applied with the bare-root transplant only at planting was not enough to keep the plant alive during the establishment period. Large plug plants, but not irrigated bare-root plants, began flowering at 3 weeks after planting. Plug plants were used to successfully establish strawberry crops with low water inputs.