Search Results

You are looking at 1 - 10 of 70 items for :

  • "plug plant" x
  • All content x
Clear All
Free access

Edward F. Durner

Two- to three-week-old `Sweet Charlie' strawberry (Fragaria ×ananassa Duch.) plug plants were conditioned [seven 9-hour short days without chilling (21 °C day/21 °C night) followed by seven 9-hour short days with chilling during the nyctoperiod (21 °C/12 °C night)] in September, then planted in a vertical hydroponic system for winter greenhouse production. Conditioned plugs produced significantly more fruit than did nonconditioned control plugs in January and February, but the difference was nonsignificant in March and April. Fruit yield increased linearly with height in the column (≈40 g/plant for every 30-cm increase in column height), probably because of increasing light level. When productivity is considered on an area basis (kg·m–2) and the column height effect on yield is accounted for, productivity over a 4.5-month period was 4.8 kg·m–2 for controls and 7.8 kg·m–2 for conditioned plugs. Conditioned plug plants offer the potential for increasing strawberry productivity and therefore the profitability of a winter greenhouse production system.

Free access

Brent L. Black, Harry J. Swartz, Gerald F. Deitzer, Bryan Butler, and Craig K. Chandler

The effect of altered red/far-red light environment on subsequent field performance of strawberry plug plants was tested. Two wavelength-selective plastic films were compared to neutral shade and full-sun control for conditioning `Chandler' strawberry plug plants before transplanting to a winter production system. The following year, plug plants of `Chandler', `Sweet Charlie', and `Allstar' were conditioned under the same treatments, with the addition of a continuous incandescent light and a short-day photoperiod, and plant performance was followed in the winter production system in Florida, a cold-climate annual hill system in Maryland, and in a low-input greenhouse production system. During the first year, the red light-filtering film slightly advanced fruiting in Florida. However, during the second year, the effect of the red light-filtering film was not significant, and a short-day treatment resulted in a greater reduction in runnering and increased early crown and flower development. For June-bearing strawberry plants maintained above 20 °C, altering the red/far-red environment did not consistently advance flowering.

Free access

Fumiomi Takeda, Stan C. Hokanson, and John M. Enns

Strawberry (`Chandler') plants were grown in a greenhouse hydroponic culture system from 28 Apr. to 20 July to produce runners (stolons) with several daughter plants. By mid-July, each `Chandler' plant had developed about 30 daughter plants on 12 runners with 1 to 6 daughter plants on each runner. Daughter plants varied in weight from <0.9 to >10 g. Daughter plant weight and position on the runner affected new root development on plug plants during the first 7 days under mist irrigation. At 3 weeks, 87% of daughter plants that weighed <0.9 g and at least 96% of daughter plants that weighed >1.0 g were rated acceptable for field transplanting, respectively. The percentage of daughter plants from second to tenth node position that were rated acceptable for field planting ranged from 98% to 88%, respectively. Runner production in the fall was not affected by either position on the runner or weight at the time of daughter plant harvest. But, larger daughter plants produced more branch crowns than did smaller daughter plants in the fall. Transplant survival in the field was 100%. In the spring, `Chandler' plants produced a 10% greater yield from daughter plants that weighed 9.9 g compared to those that weighed only 0.9 g.

Free access

Eric B. Bish, Daniel J. Cantliffe, and Craig K. Chandler

The demand for plug transplants by the Florida winter strawberry (Fragaria ×ananassa Duch.) industry may increase as water conservation during plant establishment becomes more important and the loss of methyl bromide fumigant makes the production of bare-root transplants more problematic. A study was conducted during the 1995-96 and 1996-97 seasons to determine the effect of container size and temperature conditioning on the plant growth and early season fruit yield of `Sweet Charlie' strawberry plants. Plants in containers of three sizes (75, 150, and 300 cm3) were grown in one of two temperature-controlled greenhouses (35 °C day/25 °C night or 25 °C day/15 °C night) for the 2 weeks just prior to transplanting into a fruiting field at Dover, Fla. Plants exposed to the 25/15 °C treatment had significantly higher average root dry weights at planting in 1995 and 1996 than did plants exposed to the 35/25 °C treatment. Plants exposed to the 25/15 °C treatment also had higher average fruit yields than the plants exposed to the 35/25 °C treatment (48% and 18% higher in 1995-96 and 1996-97, respectively). The effect of container size on plant growth and yield was variable. Plants propagated in the 150- and 300-cm3 containers tended to be larger (at planting) than the plants propagated in the 75-cm3 containers, but the larger container sizes did not result in consistently higher yields.

Full access

Monika Walter, Cath Snelling, Kirsty S.H. Boyd-Wilson, Geoff I. Langford, and Graeme Williams

System requirements for organic strawberry (Fragaria × ananassa) runner production under cover were determined during the 2001-02 and 2002-03 seasons. In the field, yield and fruit quality were assessed for organically produced runners (plug and bare-rooted transplant) in comparison with barerooted conventionally produced runners under organic, BioGro certified production conditions. The preferred organic production system was the enhanced suspended system, where mother plants grew on benches in the tunnel house and the first two runners were potted into growth substrate. This system produced approximately 50 plug transplants/mother plant or 200 plug transplants/m2. The least preferred system was the nursery bed, where mother plants were allowed to produce runners that yielded approximately 100 bare-rooted runners or 100 transplants/m2. Tunnel house production of runners (plug transplants and bare-rooted) allowed earlier planting (March vs. May) compared to field-produced bare-rooted runner plants. The earlier planting date increased yield by approximately 181 g/plant. Under organic production conditions, organically produced runners (plug and bare-rooted transplants) performed at least as well as bare-rooted conventionally produced runners. Our results show that indoor production of organic strawberry runners is possible. We also showed that organically produced runners (bare-rooted and plug transplants) perform similarly in the field compared to bare-rooted conventionally produced runners. Generally, there were no differences in yield or fruit quality among runner sources.

Free access

Brent L. Black

1 E-mail blackb@ba.ars.usda.gov . The author gratefully acknowledges student intern Michele Sumi for technical assistance, Davon Crest Farms for supplying strawberry plug plants, and BASF Corp. for providing prohexadione-Ca. Mention of a trademark

Free access

Bradley S. Sladek, Gerald M. Henry, and Dick L. Auld

zoysiagrass cover regardless of planting date and year. In 2006, zoysiagrass plugs spaced 15.2 cm apart and planted on 26 May exhibited the largest growth (74% cover) 6 WAP followed by 28 July (65% cover) and 20 June (58% cover) ( Table 2 ). Plugs planted on

Free access

Fumiomi Takeda, D. Michael Glenn, and Gary W. Stutte

The fall-to-winter strawberry production system in the mid-Atlantic coast region combines the new technologies for containerized nursery (plug) plant production with the protected culture system ( Takeda, 1999 ). Short-day strawberry cultivars

Full access

George Hochmuth, Dan Cantliffe, Craig Chandler, Craig Stanley, Eric Bish, Eric Waldo, Dan Legard, and John Duval

Strawberry (Fragaria ×ananassa) crops were transplanted in two seasons in central Florida with bare-root and containerized (plug) plants under three transplant establishment-period irrigation methods to evaluate crop fruiting responses and production economics associated with the various establishment systems. Irrigation was not required to establish plug transplants in the field. Early (first 2 months) fruit yield with nonirrigated plug plants was greater than early yield with sprinkler-irrigated bare-root plants (the current commercial system) in one of two seasons and equal in a second season. Total-season yields were similar in each season between the two establishment systems. Large or medium plug plants led to greatest early fruit yields in one season while large plug plants resulted in greatest early yield in a second season. Total yield was greatest with medium plants in one season and large plants in another season. The extra cost for the plug plant system was $1853/acre. In one out of two seasons there was increased net income amounting to $1142/acre due to greater early yield associated with the plug plant cultural system. Strawberry plug transplants showed promise for earlier and more profitable crops in addition to substantial savings in water used for plant establishment in the field. The ability to establish strawberry crops without irrigation will be important in areas where growers are required to reduce farm water consumption.

Full access

George Hochmuth, Dan Cantliffe, Craig Chandler, Craig Stanley, Eric Bish, Eric Waldo, Dan Legard, and John Duval

Experiments were conducted in two seasons in Dover, Fla. (central Florida), with bare-root and containerized (plug) strawberry (Fragaria ×ananassa) transplants to evaluate transplant establishment-period water use, plant growth, and flowering responses in the 3-week transplant establishment period. Strawberry plug plants were established with 290 gal/acre water applied only with the transplant at planting time, while 200,000 gal/acre from microjet or 1 million gal/acre of water from sprinkler irrigation were used to establish bare-root transplants. Root, shoot, and crown dry matter of plug plants rapidly increased during the establishment period, while there was a decline in leaf area and root and crown mass of bare-root plants, even with sprinkler or microjet irrigation. Water applied with the bare-root transplant only at planting was not enough to keep the plant alive during the establishment period. Large plug plants, but not irrigated bare-root plants, began flowering at 3 weeks after planting. Plug plants were used to successfully establish strawberry crops with low water inputs.