Search Results

You are looking at 1 - 10 of 19 items for :

  • "pampas grass" x
Clear All
Full access

James C. Sellmer, Craig R. Adkins, Ingram McCall and Brian E. Whipker

Plant growth retardant (PGR) substrate drenches (in mg a.i per pot.) of ancymidol at 0.25, 0.5, 1, 2, or 4; paclobutrazol at 1, 2, 4, 8, or 16; and uniconazole at 0.25, 0.5, 1, 2, or 4 (28,350 mg = 1.0 oz) were applied to pampas grass (Cortaderia selloana). Control of height growth during greenhouse forcing and the residual effects on plant growth in the landscape were evaluated. During greenhouse forcing, plant height exhibited a quadratic dose response to paclobutrazol and uniconazole, while ancymidol treated plants exhibited a linear response to increasing dose. All rates of uniconazole resulted in plant heights which were 56% to 75% shorter than the nontreated control, whereas paclobutrazol and ancymidol treatments resulted in 6% to 64% and 5% to 29% shorter plants, respectively. Severe height retardation was evident with {XgtequalX}2 mg uniconazole. When the plants were transplanted and grown in the landscape (24 weeks after the PGR application), all plants treated with ancymidol, paclobutrazol, and {XltequalX}0.5 mg uniconazole exhibited heights similar to the nontreated control, suggesting no residual effects of the PGR for these treatments. Only plants treated with uniconazole at {XgtequalX}1 mg remained shorter than the nontreated control in the landscape. These results demonstrate that plant growth regulators can be effectively and economically applied in the greenhouse production of pampas grass.

Free access

C.K. Palmer, C.H. Gilliam, G.J. Keever, J.W. Olive and D.J. Eakes

Pampas grass seedlings in 72-cell pack containers were transplanted into containers with a root observation window (17.8 × 10.2 cm) and treated with selected preemergence applied herbicides. Root numbers were counted in the upper and lower 8.9 cm of the viewing window until 16 days after treatment (DAT) when the windows became full of roots. Root growth in both the upper and lower window was suppressed with application of Factor 65 WG and Pendulum 60 WDG at the X and 2X rates at 16 DAT. Ronstar 2G and Pendulum 2G at the recommended rates and nontreated control plants had similar root numbers at 16 DAT. At 16 DAT, the greatest number of club roots formed on plants treated with the dinitroaniline herbicides; Pendulum 2G, Pendulum 60 WDG, and Factor 65 WG. Shoot growth was not affected by treatment.

Free access

C.D. Robacker and W.L. Corley

A micropropagation system to obtain plants from inflorescences of pampas grass (Cortaderia selloana Schult. `Pumila') was developed. Factors examined included developmental stage of inflorescence cultured and growth regulator combinations and concentrations that support explant establishment, shoot regeneration, and rooting. Immature inflorescences ≈300 mm long formed many shoot primordia when initially cultured on Murashige and Skoog basal medium containing 4.5 μm 2,4-D and 8.9 μm BA and subcultured to medium with 0.4 μm 2,4-D and 4.4 μm BA. Thereafter, monthly transfer to a medium without growth regulators yielded about three shoots per tube per month for more than 6 months. Most shoots rooted spontaneously and were easily hardened to greenhouse conditions. Field-tested plants flowered within 2 years and nearly all appeared identical to the parent cultivar. With this technique, several thousand plants can be obtained from a single inflorescence in 1 year. Chemical names used: N -(phenylmethyl)-1 H -purine-6-amine (BA); (2,4-dichlorophenoxy)acetic acid (2,4-D).

Free access

James Sellmer, Craig R. Adkins, Ingram McCall and Brian Whipker

Plant growth retardant (PGR) substrate drenches (in milligrams active ingredient) of ancymidol at 0.25, 0.5, 1, 2, or 4; paclobutrazol at 1, 2, 4, 8, or 16; and uniconazole at 0.25, 0.5, 1, 2, or 4 were applied to pampas grass (Cortaderia argentea Nees) to compare their effectiveness at chemical height control during greenhouse forcing and evaluate the residual effect on plant growth in the landscape. Cortaderia argentea plant height exhibited a quadratic dose response to paclobutrazol and uniconazole, while ancymidol-treated plants showed a linear dose effect. During greenhouse production, all rates of uniconazole reduced plant height by 56% to 71% compared to the untreated control, whereas paclobutrazol and ancymidol treatments reduced plant height by 14% to 61% and 0% to 34%, respectively. Severe height retardation was evident at 2 mg of uniconazole. By week 5 in the field all plants treated with uniconazole, paclobutrazol doses of 4, 8, or 16 mg, and with 4 mg of ancymidol were shorter than the untreated control. By week 24 in the field, all plants exhibited similar heights except plants treated with uniconazole at 1, 2, or 4 mg remained shorter than the untreated control. In conclusion, each PGR was effective in controlling plant height of Cortaderia argentea during greenhouse forcing. Furthermore, plants treated with low to moderate rates of ancymidol or paclobutrazol grew out of the regulating effect by week 5 in the landscape. These results demonstrate that PGR can be effectively and economically employed in the production of Cortaderia argentea.

Free access

Riaz Ahmad, Miki Okada, Jeffrey L. Firestone, Chris R. Mallek and Marie Jasieniuk

We isolated and characterized microsatellite loci in the ornamental pampas grass Cortaderia selloana (Schult. & Schult. f.) Asch. & Graebn. for purposes of identifying cultivars and assessing genetic relationships among cultivars. Small insert genomic libraries were enriched for dinucleotide (CT)n and (CA)n repeats. Ninety clones were sequenced of which 76% contained at least one microsatellite with a basic motif greater than six repeat units. Nine primer pairs amplified 10 polymorphic and putatively disomic loci, and were used to genotype 88 individuals representing 17 named cultivars and four selections. In total, 93 alleles were detected with a maximum of two to 19 per locus. Effective number of alleles varied from 1.3 to 9.5. Observed heterozygosity ranged from 0.07 to 0.81. The 10 microsatellite loci distinguished the majority of pampas grass cultivars. An unweighted pair group method with arithmetic mean (UPGMA) cluster analysis, based on proportion of shared alleles among individuals, revealed groups of cultivars corresponding to origin and morphological characteristics. With few exceptions, individuals of a single cultivar clustered together with moderate to strong bootstrap support (greater than 50%). Interestingly, `Pumila' from Europe and the United States formed separate clusters indicating independent origins. A large, diverse cluster with low bootstrap support consisted of selections and cultivars sold as seed, rather than potted or bare-root clonal plants. Primers designed for C. selloana amplified microsatellite loci in other Cortaderia Stapf species concordant with phylogenetic relationships among the species. Cross-amplification was 100% in C. jubata (Lemoine ex Carrière) Stapf; 77% in C. pilosa (d'Urv.) Hack. and C. rudiuscula Stapf; 66% in C. fulvida (Buch.) Zotov; and 55% in C. richardii (Endl.) Zotov and C. toetoe Zotov.

Free access

Joseph C. Neal and Andrew F. Senesac

Preemergent herbicide phytotoxicity was evaluated for six species of container-grown ornamental grasses: beach grass (Ammophila breviligulata Fern.), pampas grass [Cortaderia selloana (Schult. & Schult. f.) Asch. & Graebn.], tufted hair grass [Deschampsia caespitosa (L.) Beauvois.], blue fescue [Festuca ovina cv. glauca (Lam.) W.D.J. Koch], fountain grass [Pennisetum setaceum (Forssk.) Chiov.], and ribbon grass (Phalaris arundinacea cv. picta L.). Herbicides included isoxaben, metolachlor, MON 15151, napropamide, oryzalin, oxadiazon, pendimethalin, prodiamine, and trifluralin; the granular combination products of benefin plus trifluralin; and oxyfluorfen plus pendimethalin. Metolachlor, granular or spray, and oryzalin severely injured all species tested, except beachgrass, which was not injured by metolachlor granule. Napropamide injured pampas grass, fountain, grass, blue fescue, and tufted hair grass, but was safe on ribbon grass and beach grass. Pendimethalin, prodiamine, trifluralin; MON 15151, isoxaben, oxyfluorfen plus pendimethalin, and benefin plus trifluralin were safe on all six species. Chemical names used: N-butyl-N-ethyl-2,6-dinitro-4-(trifluoromethyl)benzenamine(benefin);N-[3-(1-ethyl-1-methylpropyl)5-isoxazolyl]-2,6-dimethoxybenzamide(isoxaben);2-chloro-N-(2-ethyl-6-methylphenyll-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate(MON 15151);N,N-diethyl-2-(l-naphthalenyloxy)propanamide (napropamide); 4-(dipropylamino)-3,5-dinitro-benzenesulfonamide (oryzalin); 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene (oxyfluorfen); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin); N3,N3-di-n-propyl-2,4-dinitro-6-(trifluoromethyl)-m-phenylenediamine (prodiamine); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine (trifluralin).

Full access

Sonali R. Padhye and Judith K. Groninger

that the height of pampas grass was controlled with substrate drenches of ancymidol, paclobutrazol, or uniconazole. The height of purple fountain grass ( Pennisetum × advena ‘Rubrum’) was controlled by spray applications of 50 mg·L −1 ancymidol or

Full access

Alan Zuk, Qi Zhang, Ted Helms and Harlene Hatterman-Valenti

, and Strictus, in addition to all hardy pampas grass replicates ( Table 1 ). For reasons stated in “Materials and Methods,” an analysis of variance on survival could not be provided. Table 1. Number of tall grasses that survived the winter month of 2010

Full access

Barbara A. Fair, Brian Whipker,, Ingram McCall and Wayne Buhler

potentially hold plants back even longer once planted in the landscape. In contrast, Selmer et al. (2001) found that once pampas grass ( Cortaderia selloana ) treated with optimal commercial drenches of either pacloputrazol or uniconazole were transplanted

Full access

Jared Barnes, Brian Whipker, Wayne Buhler and Ingram McCall

height in subsequent growing seasons. However, limited work has been done on investigating second-season effects of flurprimidol on herbaceous perennials. Sellmer et al. (2001) reported that after 24 weeks of growth in the landscape pampas grass