Search Results

You are looking at 1 - 10 of 19 items for :

  • "on-farm research" x
  • Refine by Access: All x
Clear All
Free access

John M. Luna, Daniel Green-McGrath, Ray William, Stefan Seiter, and Tom Tenas

A participatory, on-farm research project was initiated in 1992 in an effort to enhance mutual learning, knowledge, and experience of integrating cover crops into western Oregon vegetable production systems. A major goal of the project was to include growers, agribusiness representatives, governmental agency, Extension and university researchers in a collaborative learning process, emphasizing grower participation in the design and implementation of on-farm research and demonstration projects. To facilitate this participation from the planning stage forward, four “focus sessions” were hosted by lead farmers in different areas of the Willamette Valley to define growers' needs and interests relating to on-farm research and demonstration trials.

Based on individual growers' specific experimental objectives, cover crop evaluation trials were established on ten farms. Typically on each farm, 5 to 10 cover crop species or mixtures (grain and legume) were planted in large plot strips. Twenty five different cover crop species, varieties, and mixtures were planted. Seasonal cover crop biomass and nitrogen accumulation rates were determined, with cover crop impacts on crop yields and economic returns evaluated at selected sites.

Full access

Carol A. Miles

Sales of organic foods are one of the fastest growing segments of Washington state's food industry. In response to grower demand for information on organic and sustainable production practices, Washington State University (WSU) created an Extension Agricultural Systems position. This position has been instrumental in helping WSU gain the trust and recognition of organic growers. The position enabled WSU to demonstrate that it has a commitment to organic and sustainable research and extension activities. This paper describes the key activities of this position: 1) finding out research needs, 2) on-farm research approaches, 3) formation of regional research programs, and 4) creation of the WSU Food and Farm Connections Team. Grant funded on-farm research, interdisciplinary teams, and extension publications have been major emphases of the position.

Free access

J.P. Mitchell, P.B. Goodell, R. Bader, R. Cifuentes, T.S. Prather, R.L. Coviello, and D.M. May

A participatory, on-farm research and extension program has been established around 16 demonstration comparisons of biologically integrated soil building–pest management systems and conventionally managed systems within the West Side row crop area of California's San Joaquin Valley. In each of the biologically integrated parcels, cover crops and composted organic materials are integrated into rotations wherever appropriate, whereas in the conventionally managed parcels, mineral fertilizer applications are made. Pest management practices are evaluated and biologically and informationally intensive alternatives are developed through a participatory process. Indices of soil quality including nutrient status, water stable aggregates, organic matter content, and phospholipid fatty acids are routinely monitored. Information related to the objectives, structure and monitoring activities of this project during the establishment phase will be discussed.

Free access

Robert F. Bevacqua

A research and extension program for increasing vegetable production in southeastern Virginia was launched by Virginia Cooperative Extension in 1997. The launch was triggered by the construction of a shipping point market in Southampton County. First, a market window study identified target crops and the harvest period when they could be most profitably marketed. Target crops were watermelon, sweet corn, snap beans, muskmelon, bell pepper, and pumpkin. Second, a technology transfer program was formulated that emphasized demonstrations, field days, classes, and workshops. On-farm demonstrations of intensive vegetable production techniques formed the foundations of the extension effort and focused on drip irrigation, plastic mulch on raised beds, water and nutrient monitoring, honey bee pollination, and integrated pest management (IPM). “Growing Vegetables for the Commercial Market” was the title of a short course offered in partnership with the local community college. Sixty-five graduates completed the course in 1999. Workshops were offered on farm labor, marketing, irrigation, and production techniques. On-farm research was conducted in support of the emerging vegetable industry. The focus was on sweet corn IPM, variety trials for watermelon and pumpkin, and soil and plant analysis. Information was made available to growers through a bimonthly newsletter, an annual bulletin entitled Commercial Production Recommendations, and VCE postings on the World Wide Web.

Open access

Ronald S. Revord, J. Michael Nave, Ronald S. Revord, J. Michael Nave, Gregory Miller, Nicholas Meier, J. Bryan Webber, Michael A. Gold, and Tom Wahl

The Chinese chestnut (Castanea mollissima Blume) and other Castanea species (Castanea spp. Mill.) have been imported and circulated among growers and scientists in the United States for more than a century. Initially, importations of C. mollissima after 1914 were motivated by efforts to restore the American chestnut [Castanea dentata (Marsh.) Borkh.], with interests in timber-type characters and chestnut blight resistance. Chestnut for orchard nut production spun off from these early works. Starting in the early 20th century, open-pollinated seeds from seedlings of Chinese chestnut and other Castanea species were distributed widely to interested growers throughout much of the eastern United States to plant and evaluate. Germplasm curation and sharing increased quite robustly through grower networks over the 20th century and continues today. More than 100 cultivars have been named in the United States, although a smaller subset remains relevant for commercial production and breeding. The University of Missouri Center for Agroforestry curates and maintains a repository of more than 60 cultivars, and open-pollinated seed from this collection has been provided to growers since 2008. Currently, more than 1000 farms cultivate seedlings or grafted trees of the cultivars in this collection, and interest in participatory on-farm research is high. Here, we report descriptions of 57 of the collection’s cultivars as a comprehensive, readily accessible resource to support continued participatory research.

Full access

K. Delate

Organic agriculture has expanded to a $13 billion industry in the United States in 2005, continuing the nearly decade-long trend of 20% annual growth. Despite the growth in organic agriculture, our scientific knowledge of organic agriculture farming systems remains limited. Interest in sustainable and organic education at the university level has increased in recent years. To help address this need, the Iowa State University Graduate Program in Sustainable Agriculture (GPSA) was established in 2001 to meet three principal objectives: 1) provide students with the analytical and problem-solving skills required to meet the challenges confronting agriculture in the 21st century; 2) develop an innovative interdisciplinary and interdepartmental approach to graduate education; and 3) position Iowa State University at the forefront of institutions conducting research and extending knowledge about sustainable agricultural systems. As of 2004, more than 70 faculty from various departments and 29 students have participated in the program. Students have the opportunity to investigate organic issues within the context of the five new GPSA courses and to conduct organic agriculture farming systems research in thesis and dissertation studies. Producers and agricultural professionals are involved with GPSA students through the curriculum and on-farm research. Research questions involving optimizing crop or livestock production, plant protection, soil quality, and socioeconomic benefits of farming systems constitute typical theses.

Free access

John M. Luna and Mary L. Staben

Two strip tillage systems for sweet corn production were compared to conventional tillage systems in western Oregon. A power take-off rotary tiller configured to till six rows per pass was used in 1997 and 1998; a shank/coulter strip tillage machine was used in 1999 and 2000. A paired t test experimental design was used in field-scale, on-farm research with eight replications in 1997-98 and 12 replications in 1999-2000. Sweet corn was harvested using the participating growers' corn pickers and yield was determined. A subset of the participating growers recorded types of machinery and labor for tillage operations and total costs were computed for each tillage system. The rotary strip tillage system produced 900 kg·ha-1 greater corn yields (P = 0.11) than conventional tillage. The shank/coulter strip tillage system produced yields comparable to conventional tillage (P = 0.95). The rotary strip tillage system reduced total tillage costs by an average of $38.50/ha compared to conventional tillage (P = 0.03) and reduced machinery operating time by 0.59 h·ha-1 (P = 0.01). The shank/coulter strip tillage system reduced tillage costs by $36.50/ha compared to conventional tillage (P = 0.003) and reduced machinery operating time by 0.47 h·ha-1(P = 0.001). Slugs damaged corn in several strip tillage fields requiring the use of slug bait to prevent economic damage. Herbicides used in conventional tillage systems were generally effective in the strip tillage systems. Mechanical cultivation with standard cultivating equipment was more difficult in some of the strip tillage fields with heavy cover crop residue.

Free access

Bert Cregg*

Lilac (Syringa vulgaris L) seedlings are commonly grown in many seedling nurseries in Michigan. Typically seedlings are lifted in the fall and stored prior to shipment or stored by the customer. A major problem in field production of lilacs is that seedlings often retain their leaves late in the fall. If the leaves are not removed prior to storage or shipment, the seedlings will mold and deteriorate. Therefore, growers must spend additional labor to remove the leaves, often by hand. The goal of this research was to evaluate chemical alternatives to defoliate lilac seedlings in field nurseries. Two on-farm research trials were conducted in 2001 and 2003 in cooperation with a seedling grower in Saugatuck, MI. In Experiment 1, Florel (1/2 and ¼ dilution) and chelated copper (0.5% and 1% solution) were sprayed by and onto lilac in the seedling bed. Florel and chelated copper effectively reduced leaf area of lilac seedlings. Less than 20% of the initial leaf area remained on the 1% copper and ½ Florel-treated seedlings. The ½ Florel and 1% chelated copper completely defoliated 67% and 40% of the seedlings, respectively, whereas only 17% on the control seedlings lost all their leaves prior to lifting. Both levels of Florel and the 1% copper treatment reduced growth of seedlings after planting. In experiment 2, we applied chelated copper treatments at varying rates (0.25% and 0.5%) and times (1 application and 2 applications) using the cooperators' spray equipment. Repeated applications of chelated copper were more effective in reducing seedling leaf area than a single application at both concentrations tested.

Full access

John C. Majsztrik, Elizabeth W. Price, and Dennis M. King

We describe and estimate the potential environmental benefits associated with the adoption of wireless sensor irrigation networks (WSIN) in United States ornamental crop production. Benefit estimates are based on results from on-farm research conducted during the previous three years, using both conservative and optimistic assumptions about the levels of WSIN technology adoption. We project reductions in water use and air and water emissions for six U.S. agricultural regions, the U.S. overall, and the six states that make up the Chesapeake Bay watershed. Based on these analyses, an average nationwide WSIN adoption rate of 50% in ornamental operations would result in annual water use savings of ≈223 billion liters (enough for 400,000 U.S. households annually) or a 25% reduction in total water use for all ornamental production. Reductions in annual carbon dioxide emissions, assuming only the reduced energy use from pumping less water was 36,232 Mg (equivalent to removing 7500 cars annually). Reduced fertilizer applications and more efficient irrigation resulted in reductions of 282,000 kg nitrogen and 182,000 kg phosphorous. These efficiency gains and nutrient discharge reductions have been shown to generate significant profits for growers, but would cost hundreds of thousands of dollars to achieve using conventional urban or agricultural best management practices (BMPs). If WSIN technologies are adopted in other areas of specialty horticulture (e.g., fruit, vegetable, and nut production) or in agronomic crops [e.g., corn (Zea mays) and wheat (Triticum sp.)], the indirect and induced private and environmental benefits will likely be much higher. Since the environmental benefits of WSIN technologies depend critically on adoption rates, we also briefly describe potential pathways to increase WSIN adoption such as providing technical assistance or offering financing or loan guarantees.