Search Results

You are looking at 1 - 10 of 200 items for :

  • "nutritional quality" x
Clear All
Free access

Harbans L. Bhardwaj and Anwar A. Hamama

helping to increase the availability of this crop as an oilseed. The objectives of these studies were to determine fresh yield and nutritional quality traits of canola sprouts and to assess the potential of canola sprouts by comparing their composition

Restricted access

Rolland Agaba, Phinehas Tukamuhabwa, Patrick Rubaihayo, Silver Tumwegamire, Andrew Ssenyonjo, Robert O.M. Mwanga, Jean Ndirigwe and Wolfgang J. Grüneberg

magnitudes of variance components for yield and nutritional quality traits provide information for better understanding of germplasm properties. Similarly, genotypic and phenotypic variation coefficients (GCV and PCV, respectively) give a measure of the

Restricted access

Desire Djidonou, Amarat H. Simonne, Karen E. Koch, Jeffrey K. Brecht and Xin Zhao

study on sweet bell pepper showed no difference between grafted and nongrafted plants in the nutritional quality parameters evaluated ( Colla et al., 2008 ). Furthermore, findings of improved nutritional quality of tomato fruit by grafting have also been

Restricted access

Haijie Dou, Genhua Niu, Mengmeng Gu and Joseph G. Masabni

Chl b were calculated according to Porra et al. (1989) and were used to calculate Chl a+b concentration and Chl a/b ratio. Nutritional quality measurement. Six plants per treatment were randomly selected for measurements of soluble sugar percent

Open access

Noriko Ohtake, Masaharu Ishikura, Hiroshi Suzuki, Wataru Yamori and Eiji Goto

lettuce. We posed three questions: 1) Does continuous irradiation with alternating red/blue light enhance plant growth? 2) Does it affect nutritional quality, including concentrations of sugar, ascorbic acid, and anthocyanins? 3) What mechanisms are

Full access

Gene Lester

This article examines the nutritional quality and human health benefits of melons, specifically, muskmelon or cantaloupe (Cucumis melo L. var. reticulatus Naud.) and honeydew melon (Cucumis melo L. var. inodorus Naud.) types. Melons are naturally low in fat and sodium, have no cholesterol, and provide many essential nutrients such as potassium, in addition to being a rich source of beta-carotene and vitamin C. Although melons are an excellent source of some nutrients, they are low in others, like vitamin E, folic acid, iron, and calcium. Since the U.S. diet is already high in fat and protein content, melons should be included in everyone's diet, along with five to eight servings per day of a variety of other fruit and vegetables, to ensure adequate nutrition, promote individual health, and reduce one's risk of cancer and certain other chronic diseases.

Free access

Jaime Prohens, Adrián Rodríguez-Burruezo, María Dolores Raigón and Fernando Nuez

accessions with an increased concentration of phenolics as a way to develop new varieties with improved nutritional quality was suggested by Stommel and Whitaker (2003) . These authors studied the concentration of hydroxycinnamic acid conjugates in the fruit

Free access

Anusuya Rangarajan, Wanda Chenoweth, John F. Kelly and Karen Agee

Studies have been underway to evaluate the genetic variation in iron nutritional quality of the green leafy vegetable Amaranthus. Initial screening of 35 lines of amaranth from 12 species indicated wide variation in total iron, and small, but significant, differences in bioavailable iron, as determined by an in vitro assay. To verify if the differences in bioavailable iron detected by the in vitro assay were biologically significant, two lines of amaranth, A. tricolor Ames 5113 and A. hypochondriacus Ames 2171, were evaluated using a hemoglobin repletion assay in rats. Weanling Sprague-Dawley rats were made anemic by feeding an ironfree casein-based diet for 4 weeks. The anemic animals were fed treatment diets in which all Fe was provided by the amaranth lines. Hemoglobin levels were measured at the start and end of the treatment period to determine bioavailability. Although A. tricolor contained a higher concentration of total iron (670 ppm), the bioavailability of this iron to rats was lower than from the A. hypochondnacus line (total Fe = 210 ppm). Similar amounts of either amaranth line added to the diet produced similar changes in hemoglobin, although total iron concentrations were significantly different, confirming results observed with in vitro assays.

Free access

Anusuya Rangarajan and John F. Kelly

Over the past few years, studies have been conducted exploring the variability in iron nutritional quality from a tropical vegetable, Amaranthus. In order to confirm previous iron bioavailability data, A. cruentus, A. hypochondriacus and A. tricolor lines were grown at the MSU Horticulture Research Center and then analyzed for total and in vitro bioavailable iron. Leaves were harvested 39 days after transplanting, washed, lyophilized and ground. Total iron levels were determined using atomic absorption spectroscopy and bioavailable iron estimates derived using an in vitro assay simulating gastrointestinal digestion. Among the lines tested, total iron concentrations ranged from 145 to 506 ppm. Bioavailable iron ranged from 44 to 70 ppm. Both the total and bioavailable iron measured were highest in A. tricolor, similar to results of previous years. Total iron values were lower for all of the lines than detected previously, but the range of bioavailable iron was similar to earlier work. Bioavailable iron estimated using the in vitro procedure does not appear to be greatly influenced by fluctuations in total iron content. Amaranth could provide between 44 and 70 mg Fe/100 gm fresh weight, equal to 20-35% of the daily Fe requirement for women, and 40-70% for men. Future experiments will utilize an animal bioassay to verify differences detected in bioavailable iron.

Free access

M.S.S. Rao, Ajmer S. Bhagsari and Ali I. Mohamed

In Asian countries and among the oriental populations in the United States, vegetable soybeans are consumed much the same way as green peas are consumed. A need exists for developing soybean cultivars adapted to the U.S. environments to take advantage of the economic potential of vegetable soybeans for both domestic and international markets. During 1997, 12 vegetable soybean genotypes of exotic origin and two local U.S. soybean cultivars were evaluated for their agronomic performance in a randomized complete block, with four replications, at the Agric. Res. Stn. FVSU, Ga. At the R6 stage (when the seeds are of full size and still immature), plants from a half-meter-row length were sampled from each plot to estimate green pod and seed yield, and determine the nutritional quality of green beans. Significant differences were observed among genotypes for the agronomic and biochemical parameters studied. The green seed yield ranged from 7.1 (cv. Ware) to 14.0 Mg·ha–1 (cv. Tanbagura). Three cultivars, Tomahamare, Mian Yan, and Tousan-122, produced green seed yields in excess of 12 Mg·ha–1. The number of green pods varied between 1518 (Tanbagura) and 3526/m2 (cv. Hutcheson). The green bean oil and protein contents, ranged from 53.1 to 105.4 and from 354.2 and 418.3 g·kg–1, respectively. Thus, the green seeds contained only 30% of oil, but 50% to 80% of protein normally found in mature soybean seed. The glucose content was between 4.1% and 7.0%, while the phytate content varied between 0.93% and 1.3%. T he green seed yield was significantly correlated with number of green pods, number of green seeds, and green pod weight. This study showed that some exotic vegetable soybean genotypes may be suitable for production in the southeastern U.S.