Search Results

You are looking at 1 - 10 of 56 items for :

  • "nitrate reductase activity" x
Clear All
Free access

Donald J. Merhaut and Rebecca L. Darnell

Commercial blueberry production is limited primarily to soils where ammonium, rather than nitrate, is the predominant N form. However, Vaccinium arboreum, a species native to northern Florida, often is found growing in soils where nitrate is the major N form. This species may serve as a breeding source or rootstock for commercial blueberries, expanding the potential soil types that may be used for blueberry cultivation. In our study, in vivo nitrate reductase activity (NRA) was measured in roots and leaves of 2-year-old seedlings of V. arboreum and a commercial cultivar, V. corymbosum `Sharpblue'. Plants were grown hydroponically in sand culture and fertilized with a modified Hoagland's solution containing N as either ammonium, ammonium nitrate, or nitrate. Vaccinium arboreum averaged nitrite at 200, 60, and 20 nmol/g fresh weight per h for nitrate, ammonium nitrate, and ammonium fertilized plants, respectively. `Sharpblue' root NRA was significantly lower, averaging nitrite 50, 38, and 8 nmol/g fresh weight per h for nitrate, ammonium nitrate, and ammonium fertilized plants, respectively. NRA was much lower in leaves than roots of V. arboreum, averaging nitrite at ≈15 nmol nmol/g fresh weight per h across N treatments. No NRA was detected in the leaves of `Sharpblue', regardless of N treatment. These data suggest that V. arboreum may be used as a rootstock or breeding source to expand blueberry production into soil types that are higher in nitrate than the soils typically used for blueberry production.

Free access

Jun Ying Zhao, Li Jun Wang, Pei Ge Fan, Zhan Wu Dai and Shao Hua Li

Half or whole root systems of micropropagated `Gala' apple (Malus ×domestica Borkh.) plants were subjected to drought stress by regulating the osmotic potential of the nutrient solution using polyethylene glycol (20% w/v) to investigate the effect of root drying on NO3- content and metabolism in roots and leaves and on leaf photosynthesis. No significant difference in predawn leaf water potential was found between half root stress (HRS) and control (CK), while predawn leaf water potential from both was significantly higher than for the whole root stress (WRS) treatment. However, diurnal leaf water potential of HRS was lower than CK and higher than WRS during most of the daytime. Neither HRS nor WRS influenced foliar NO3- concentration, but both significantly reduced NO3- concentration in drought-stressed roots as early as 4 hours after stress treatment started. This reduced NO3- concentration was maintained in HRS and WRS roots to the end of the experiment. However, there were no significant differences in NO3- concerntation between CK roots and unstressed roots of HRS. Similar to the effect on root NO3- concentration, both HRS and WRS reduced nitrate reductase activity in drought-stressed roots. Moreover, leaf net photosynthesis, stomatal conductance and transpiration rate of HRS plants were reduced significantly throughout the experiment when compared with CK plants, but the values were higher than those of WRS plants in the first 7 days of stress treatment though not at later times. Net photosynthesis, stomatal conductance and transpiration rate were correlated to root NO3- concentration. This correlation may simply reflect the fact that water stress affected both NO3- concentration in roots and leaf gas exchange in the same direction.

Free access

Giuseppe Colla, Carolina María Cardona Suárez, Mariateresa Cardarelli and Youssef Rouphael

the following order: 1) to select among commercial melon rootstocks for improved NUE through the measurement of crop traits (shoot dry biomass, leaf area, root-to-shoot ratio, SPAD index, shoot N uptake, and nitrate reductase activity) at early

Free access

Zhong-Hua Bian, Rui-Feng Cheng, Qi-Chang Yang, Jun Wang and Chungui Lu

properties of starch and protein in selected cereals and quality of their food products Food Chem. 95 9 18 Ramalho, C.B. Hastings, J.W. Colepicolo, P. 1995 Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in

Free access

Zhihui Chang, Laiqiang Zhuo, Fangfang Yu and Xunzhong Zhang

the key enzymes in N metabolism and nitrate reductase activity is associated with efficiency of nitrate reduction and N assimilation ( Subramanian and Charest, 1999 ). Antolín et al. (2010) reported that sludge treatment increased levels of N

Restricted access

San-Gwang Hwang, Hsiao-Chien Chao and Huey-Ling Lin

concentration was measured using an RQflex 10 reflection photometer (Merck, Tokyo, Japan). Nitrate reductase activity was analyzed following the method of Jaworski (1971) . A KNO 2 solution was used as a standard solution to determine sample NRA (μmol/h/g FW

Free access

Yan Zhang, Cuiyue Liang, Yan Xu, Thomas Gianfagna and Bingru Huang

nitrate reductase activity Biol. Plant. 32 89 96 Hoagland, C.R. Arnon, D.I. 1950 The solution-culture method for growing plants without soil California Agr. Expt. Circ. 347 Hu, Y.L. Jia, W

Free access

Linda Gaudreau, Josée Charbonneau, Louis-P. Vézina and André Gosselin

Two cultivars (Karlo and Rosanna) of greenhouse lettuce were grown under different photosynthetic photon fluxes (PPF) and photoperiods provided by 400-W high–pressure sodium lamps. Natural light was compared to suppletmental lighting treatments providing either 50 or 100 μmol m-2-s-1 for photoperiods of 16, 20 or 24 h. Lettuce plants were grown in hydroponic gulleys using a standard nutrient solution. Plant fresh weights were measured every week for the duration of each culture grown between August 1989 and June 1990. The incidence of tipburn and the overall quality of the shoots were determined at the end of each crop. Leaf nitrate contents and nitrate reductase activity were measured for various lighting treatments. The highest fresh weight was obtained for the highest PPF and the longest photoperiod. However, these treatments were associated with a higher incidence of tipburn. Supplemental lighting reduced the leaf nitrate contents and affected the nitrate reductase activity.

Free access

Kai Zhou, Weiming Guo and Zhongchun Jiang*

The autointoxication of chrysanthemum was studied using water extract of Dendranthema morifolium's rhizospheric soil. Results of bioassays showed that the water extract inhibited chrysanthemum seed germination and the activities of some important root enzymes. The seedling nitrate reductase activity was decreased linearly with increasing concentration of the extract. The activity of root dehydrogenase was inhibited only at the highest concentration tested [3.2 g·mL-1, dry weight (DW)], but was stimulated at a lower concentration tested (1.6 g·mL-1, DW). Malondialdehyde content increased at higher than 1.6 g·mL-1, DW concentrations of the extract. The autointoxication phenomenon might be related to the difficulties in continuous plantings of chrysanthemum at the same location.

Free access

Seong-Hee Lee, Soon-Ho Ha and Gap-Chae Chung

In order to diagnose the nutritional disorders caused by various environmental stress, biochemical test, xylem sap analysis and colorimetric petiole analysis were used to assay symptoms well before the severe development. Among the various enzymatic analysis, alkaline phosphatase activity was highly specific to calcium deficiency while in vivo nitrate reductase activity was not stable parameter in response to nitrogen deficiency. Determination of nitrogen, phosphorus and magnesium by colorimetric petiole analysis was sensitive to induced deficiencies. The status of potassium in the plant, however, could be better determined with the xylem sap analysis. Salinity stress induced by low osmotic potential of the nutrient solution increased the activity of alkaline phosphatase, showing similar results as calcium deficiency. Magnesium and phosphorous contents by the colorimetric petiole analysis were particularly low when the roots in anoxia.