Search Results

You are looking at 1 - 10 of 18 items for :

Clear All
Free access

Emily G. Tenczar and Vera A. Krischik

insects should involve the development of cultivars with novel qualitative chemicals or increased levels of quantitative chemicals that bind with nitrogen and reduce its availability in food. Ninebark ( Physocarpus opulifolius ) (Rosales: Rosaceae) is a

Free access

David C. Zlesak

‘Donna May’ is a new vegetatively propagated cultivar of Physocarpus opulifolius (L.) Maxim (common names include ninebark, common ninebark, and eastern ninebark). ‘Donna May’ has a compact, well-branched growth habit (≈1 m in height and width

Free access

Jeffrey H. Gillman*

Hydrogels are crystals that can suck up 600 or more times their weight in water. These gels are sold as additives for soils and container media for the purpose of reducing the frequency of watering. Five different hydrogels and a control were tested on geranium and 3 different hydrogels and a control were tested on ninebark to see how long plants could be kept healthy without watering. Growth was roughly similar among the control and the different hydrogels tested with the exception of Hydrosorb™, which stunted the growth of the ninebark. After plants reached a size that was considered saleable watering was stopped and the plants were allowed to dry out. None of the hydrogels kept the plants supplied with water for any longer than the controls. Hydrosorb™ did appear to keep ninebarks at a healthy water potential for longer than the other hydrogels and the control, however, this is almost certainly because of the smaller size of the plants.

Free access

Joanna Gils, Calvin Chong and Glen Lumis

Ninebark [Physocarpus opulifolius (L.) Maxim] was grown on troughs under greenhouse conditions in 2.5-L containers filled with 100% composted pine bark and fertigated with drip irrigation using the following nutrient solutions: 1) a complete (control) solution, electrical conductivity (EC) of 1.75 dS·m–1, nonrecirculated; 2) solution as in treatment 1 but recirculated; 3) unamended municipal solid waste compost (MSW) leachate, EC 1.75 dS·m–1, recirculated; 4) solution as in treatment 3 amended in order of priority with NO3-N, NH4-N, P, K, Ca and/or Mg, to match the concentrations in the complete solution, EC 2.60 dS·m–1, recirculated; 5) unamended turkey litter compost (TLC) leachate, EC 1.75 dS·m–1, recirculated; and 6) solution as in treatment 5 amended as in treatment 4, EC 2.40 dS·m–1, recirculated. Among the four recirculated compost leachate treatments, shoot (stems and leaves) dry weight of ninebark was least with the unamended MSW, intermediate with amended MSW, and greatest but similar with both unamended and amended TLC. The most growth occurred with the recirculated control solution. Among the four leachate treatments, ninebark grew acceptably well only with recirculated unamended TLC, and was similar to that with the nonrecirculated control solution. Three treatments (nonrecirculated control, recirculated control and unamended TLC) showed no nutrient toxicity or deficiency symptoms. Poorer growth responses in the other treatments (amended TLC, amended MSW and unamended MSW) were related primarily to excess salts and/or nutritional disorders due to imbalance(s) in one or more nutrients.

Open access

Ji Jhong Chen, Yuxiang Wang, Asmita Paudel and Youping Sun

designated ratio but the same total volume. Using the NCGD system to study the responses of different plants to a specific range of salt concentrations can help define the salinity threshold for plant species. Rose of sharon, ninebark, and japanese spirea are

Full access

Erin M.R. Clark, John M. Dole, Alicain S. Carlson, Erin P. Moody, Ingram F. McCall, Frankie L. Fanelli and William C. Fonteno

reduce vase life if the incorrect concentration is used. Common ninebark. ‘Diabolo’ was unaffected by treatment, whereas the vase life of ‘Summer Wine’ was increased by a holding solution. Coneflower ‘comet’. Holding preservatives increased vase life, and

Free access

Calvin Chong, Glen Lumis, Peter Purvis and Adam Dale

Rooted cuttings of `Antonovka' apple, `Lynwood Gold' forsythia, double-flowered kerria, common ninebark, `Goldfinger' potentilla, and `Red Prince' weigela were grown in 2-gal (6-L) nursery containers filled with 1:1 (by volume) of waste compost and composted pine bark, under three fertilizer regimes: 1) liquid nutrients [target concentrations in ppm (mg.L-1): NH4-N, 13; NO3-N, 100; P, 28; K, 120; Ca, 92; Mg, 13; Fe, 1.3; Mn, 0.27; Zn, 0.23; Cu, 0.05; B, 0.22; Mo, 0.05; Na, <50; Cl, <50; and SO4 <300] delivered and recycled twice per day via a computer-controlled multifertilizer injector; 2) same nutrient formula and concentration rate delivered fresh via the injector but without recycling; and 3) Nutryon (Polyon) 17-5-12 controlled-release fertilizer incorporated into the medium at a rate of 11 lb/yd3 (6.5 kg·m-3). With recycled liquid nutrients, all species grew the same or more than with nonrecycled nutrients, and generally the poorest growth was with controlled-release fertilizer. Foliar concentrations of K (all species), N (all species), P (forsythia, kerria, potentilla, and weigela), and Mn (forsythia, potentilla, and weigela) were higher in plants supplied with recycled and/or nonrecycled nutrients than in those supplied with controlled-release fertilizer, while foliar concentrations of Ca (ninebark and kerria) and Mg (apple, kerria, ninebark, potentilla, and weigela) were lower. Compared to nonrecycled liquid nutrients, the amounts of individual recycled nutrients were reduced by (percentage in brackets): NH4-N (30), NO3-N (78), P (76), K (46), Ca (93), Mg (96), Fe (52), Mn (43), Zn (55), Cu (60), B (83), and Mo (66).

Free access

Peter Purvis, Calvin Chong and Glen Lumis

Plug-rooted liners of common ninebark [Physocarpus opulifolius (L.) Maxim.] were grown in 6-L nursery containers filled with 73% composted pine bark, 22% sphagnum peat moss, and 5% pea gravel (by volume). Plants were fertilized with Polyon (Nutryon) 17–5–12 (17N–2P–5K) 6-month controlled-release fertilizer at various rates (2.5, 4.5, 6.5, and 8.5 kg·m-3) pre-incorporated, topdressed, or dibbled (placed under the liner at potting). Plants were trickle-irrigated daily with low (0.4-L), middle (0.8-L), or high (2.0-L) volumes of water to maintain leaching fractions of <0.15, 0.25–0.35, or >0.60, respectively. Regression analysis indicated that growth of ninebark increased from 30 to 109 g/plant with increasing rates of incorporated fertilizer (mean over irrigation volumes), from 27 to 71 g/plant with topdress and from 59 to 103 g/plant with dibble. Electrical conductivity (EC, mean over five dates) of the leachate throughout the season was highest with dibble (0.85 dS·m-3), intermediate with incorporated (0.81 dS·m-3), and least with topdressed (0.76 dS·m-3). With low irrigation volumes, growth of ninebark increased from 42 to 81 g/plant with increasing rates of fertilizer (mean over methods), and from 39 to 105 g/plant with middle or high volumes (common regression curve). With low irrigation volumes, leachate EC increased from 0.74 to 0.94 dS·m-3 with increasing rates of fertilizer, and from 0.75 to 0.81 dS·m-3 with middle or high volumes.

Free access

Calvin Chong, R.A. Cline, D.L. Rinker and O.B. Allen

`Eight deciduous ornamental shrubs-deutzia (Deutzia gracilis Siebold & Zucc.), dogwood (Cornus alba L. `Argenteo-marginata'), forsythia (Forsythia × intermedia Zab. `Lynwood Gold'), ninebark [Physocarpus opulifolius (L.) Maxim.], potentilla (Potentilla fruticosa L. `Red Ace'), privet (Ligustrum vulgare L.), rose (Rosa L. `John Frank. lin'), and weigela [Weigela florida (Bunge) A. DC. `Variegata Nana']—were grown in trickle-irrigated containers with 100% bark (control) or with bark and 33%, 67%, and 100% (by volume) of each of three sources of spent mushroom compost (unweathered, weathered, and unweathered compost leached with water). Despite large variation in species growth response to sources and levels of compost, most grew equally well or better in the compost-amended regimes than in 100% bark and were influenced little, or not at all, by initial or prevailing salt levels in the media. Shoot and root dry weight of dogwood, forsythia, ninebark, rose, and weigela (all sources), and shoot dry weight of deutzia and potentilla (weathered source only), increased linearly or curvilinearly with increasing compost levels. The reverse relationship occurred (all sources) in shoot and root dry weight of privet and root dry weight of weigela and potentilla. Leaf nutrients (N, P, K, Ca, Mg, Fe, Mn, and Zn) tended to increase with increasing compost levels, but not all species showed this response with all nutrients. Regardless of compost source or level, all shrubs were of marketable quality when harvested, except privet, which showed leaf chlorosis in all compost-amended regimes.

Free access

Calvin Chong and Bob Hamersma

Terminal stem cuttings of four evergreens [arborvitae (Thuja occidentalis L.), `Calgary Carpet' juniper (Juniperus sabina L.), `Hetzii' juniper (Juniperus virginiana L.), and Tamarix juniper (Juniperus sabina L.)] and four deciduous {Amur maple (Acer ginnala Maxim.), common lilac (Syringa vulgaris L.), ninebark [Physocarpus opulifolius (L.) Maxim.], and viburnum (Viburnum farreri Stearn)} woody landscape shrubs were treated with 0%, 0.1%, 0.3%, or 0.8% IBA mixed in talc or with 0%, 0.25%, 0.5%, 1.0%, or 1.5% IBA dissolved in 95% ethanol, radiator antifreeze (95% ethylene glycol), or windshield washer fluid (47.5% methanol). None of the carriers were phytotoxic to the cuttings. Cuttings treated with IBA in radiator antifreeze or windshield washer fluid produced rooting in most taxa similar to those treated with IBA in ethanol. Cuttings of the evergreen taxa produced more roots with liquid than with talc IBA at similar concentration ranges. There were some differences in rooting performance (expressed in terms of percent rooting, mean root count per rooted cutting, and length of the longest root per cutting) of taxa to solvents and IBA concentrations. However, such differences, if any, were generally small or commercially insignificant, except for ninebark, which rooted optimally with no IBA and exhibited a large reduction in percent rooting with increasing IBA concentrations in windshield washer fluid. Chemical name used: indolebutyric acid (IBA).