Search Results

You are looking at 1 - 10 of 149 items for :

  • "net CO2 assimilation" x
  • Refine by Access: All x
Clear All
Free access

R.E. Moran, D.E. Deyton, C.E. Sams, J. Cummins, and C.D. Pless

Soybean oil can be used as an alternative pesticide for fruit trees. Two separate studies were conducted to determine the effects of oil concentration on leaf phytotoxicity and net CO2 assimilation (ACO2). In one study, concentrations of 0%, 2%, 4%, and 6% soybean oil in water were applied to individual shoots with a hand-held mist bottle. In the second study, 0%, 1.0%, and 1.5% were applied to whole trees with an airblast sprayer. Petroleum oil was applied as a separate treatment. Net CO2 assimilation was measured on single leaves. Oil residue was removed from the leaf with chloroform, dried, and weighed. Chlorosis and defoliation occurred with applications of 4% and 6% soybean oil. No visible phytotoxicity occurred with 2% or less oil. Net CO2 assimilation decreased as the rate of soybean oil increased from 0% to 4% oil, but there was no difference between 4% and 6%. Net CO2 assimilation decreased with increasing oil concentration from 0% to 1.5% and recovered to the rate of the control on day 7. Net CO2 assimilation was negatively related to oil residue. At an equivalent oil residue, there was no difference in ACO2 between petroleum and soybean oil. Below a residue of 0.15 mg·cm–2, foliar phytoxicity did not occur. Reductions in ACO2 were small and did not last longer than 7 days if residues were ≤0.10 mg·cm–2.

Free access

Maria Derkacz, Calvin Chong, and John Proctor

Growth of peach fruits is characterized by a double-sigmoid curve; two periods of rapid enlargement (stages I and III) separated by a lag phase (stage II). Seasonal net CO2 assimilation rates (NAR) were compared in leaves from fruiting and non-fruiting (deblossomed) trees of `Harrow Diamond' (early), and `Vivid' (mid-summer) peach (Prunus persica L. Batsch.) and `Fantasia' (late) nectarine (P. persica) to determine 1) the influence of fruits on photosynthesis and 2) the relationship between NAR and fruit growth. Seasonal trends in NAR tended to be qualitatively similar among the three cultivars, despite genotypic and phenotypic differences. There was a distinct increase in NAR at the time of horticultural fruit maturity (stage III) of each cultivar. Shortly after harvest, NAR rates declined. The average seasonal NAR of fruiting `Harrow Diamond', `Vivid', and `Fantasia' trees was 9%, 11%, and 10% higher, respectively, than that of corresponding non-fruiting trees. Parallel data for total chlorophyll was 28%, 20%, and 19% higher, and specific leaf weight (SLW) was 3%, 5%, and 6% lower, respectively. A negative correlation between NAR and SLW may indicate a feedback inhibition of photosynthesis.

Free access

R. Romero-Aranda and J.P. Syvertsen

The penetration of foliar-applied urea and salt solutions into citrus leaves was investigated using `Duncan' grapefruit and `Valencia' orange seedlings in a greenhouse, and 8-year-old `Ruby Red' grapefruit trees in field tests during the summer and fall. Net gas exchange rates, Cl, nitrogen, and chlorophyll concentrations of singles leaves were measured during or after the period of foliar applications. Foliar-applied salt treatments increased leaf Cl, and visible burn symptoms were observed when Cl levels reached ≈0.4% of leaf dry weight. After 11 weeks, green areas from salt-treated leaves had similar rates of net CO2 assimilation as control plants. Leaf nitrogen and total chlorophyll increased with repeated sprays. Urea sprayed at 15% caused foliar burn symptoms after two to three applications and increased the amount of leaf abscission. Urea sprayed at 6% increased CO2 assimilation rate ≈50% after three foliar applications in 3 weeks. Nitrogen content and net CO2 assimilation of urea and urea + salt leaves were similar.

Free access

Renae E. Moran, Dennis E. Deyton, Carl E. Sams, Charles D. Pless, and John C. Cummins

Soybean [Glycine max (L.) Merrill] oil was applied to apple trees [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] as a summer spray in six studies to determine if it controls European red mites [Panonychus ulmi (Koch.)], how it affects net CO2 assimilation (A), and if it causes phytotoxicity. Sprays of 0.5%, 1.0%, and 1.5% soybean oil {TNsoy1 formulation [soybean oil premixed with Latron B-1956 (LAT) spreader-sticker at 10 oil: 1 LAT (v/v)]} reduced mite populations by 94%. Sprays of 1% and 2% soybean oil reduced mite populations to three and four mites per leaf, respectively, compared to 25 per leaf on water-sprayed plants. Soybean oil concentrations of 1.0% and 1.5% applied to whole trees reduced A for less than 7 days. Phytotoxicity did not occur when soybean oil was applied with an airblast sprayer at concentrations of 1.0% and 1.5% or with a mist bottle at 2%. Phytotoxicity occurred when soybean oil was applied with a mist bottle at 4% and 6%, which left soybean oil leaf residues of 0.22 to 0.50 mg·cm-2. No phytotoxicity occurred with 4% SunSpray, which resulted in a mean leaf residue of only 0.13 mg·cm-2. Spraying 1% soybean oil tended to give better mite control than 1% SunSpray Ultra-Fine oil, but caused greater oil residues and a greater reduction in A.

Free access

John L. Jifon and Jim Syvertsen

Maximum CO2 assimilation rates (ACO2) in citrus are not realized in environments with high irradiance, high temperatures, and high leaf-to-air vapor pressure differences (D). We hypothesized that moderate shading would reduce leaf temperature and D, thereby increasing stomatal conductance (g s) and ACO2. A 61% reduction in irradiance under aluminum net shade screens reduced midday leaf temperatures by 8 °C and D by 62%. This effect was prominent on clear days when average midday air temperature and vapor pressure deficits exceeded 30 °C and 3 kPa. ACO2 and gs increased 42% and 104%, respectively, in response to shading. Although shaded leaves had higher gs, their transpiration rates were only 7% higher and not significantly different from sunlit leaves. Leaf water use efficiency (WUE) was significantly improved in shaded leaves (39%) compared to sunlit leaves due to the increase in ACO2. Early in the morning and late afternoon when irradiance and air temperatures were low, shading had no beneficial effect on ACO2 or other gas exchange characteristics. On cloudy days or when the maximum daytime temperature and atmospheric vapor pressure deficits were less than 30 °C and 2 kPa, respectively, shading had little effect on leaf gas exchange properties. The results are consistent with the hypothesis that the beneficial effect of radiation load reduction on ACO2 is related to improved stomatal conductance in response to lowered D.

Free access

J.G. Norcini, P.C. Andersen, and G.W. Knox

Abbreviations: A, net CO 2 assimilation; Ci, intercellular CO 2 concentration; E, transpiration rate; GI, growth index; gs, stomatal conductance; LT, leaf ternperature; PE, pretreatment expanded; PPF, photosynthetic photon flux RE, recently

Free access

P.C. Andersen, J.G. Norcini, and G.W. Knox

Abbreviations: A, net CO 2 assimilation; chl, chlorophyll; Ci, intercellular CO 2 concentration; E, transpiration; GI, growth index, GLM, general linear model; gs, stomatal conductance; LT, leaf temperature; RLWC, relative leaf water content; SLW

Free access

Evagelini Kitta, Nikolaos Katsoulas, Anna Kandila, Maria M. González-Real, and Alain Baille

, like other species, is sensitive to high temperature ( Erickson and Markhart, 2001 , 2002 ; Rylski and Spigelman, 1982 ) but appear to maintain their leaf net CO 2 assimilation rates at temperatures as high as 33 °C in detriment of developing fruits

Free access

Thomas E. Marler and Michael V. Mickelbart

The influence of drought stress on leaf gas exchange and chlorophyll fluorescence characteristics of field-grown papaya (Carica papaya L.) plants was determined under a range of incident light fluxes and times of day. These data may aid in improving management systems for papaya production which minimize detrimental effects from suboptimal environmental conditions. Water was withheld from field-grown `Red Lady' plants in one study and `Tainung #2', `Red Lady', and `Sunrise' plants in a second study until soil matric potential was -60 to -70 kPa. Drought-stressed plants exhibited reduced net CO2 assimilation (ACO2) above light saturation, photosynthetic photon flux (PPF) at which light saturation for ACO2 occurred, and apparent quantum yield compared to well-watered plants. The light compensation point of drought-stressed plants was greater than that of well-watered plants. Leaf chlorophyll fluorescence characteristics were not influenced by drought stress. The daily pattern of leaf gas exchange was dependent on climatic conditions. For sunny days, ACO2, stomatal conductance of water (gs), and water use efficiency of well-watered plants were maximal at mid-morning, declined during midday, and then partially recovered during late afternoon. In drought-stressed plants, leaf gas exchange was relatively constant after a brief early morning maximum. On overcast days, the responses of gas exchange variables in relation to time of day followed smooth bell-shaped patterns regardless of the level of drought stress. Combined with previously published data, these results indicate that the influence of drought stress on gas exchange is highly dependent on time of day, ambient sky conditions, plant size, and speed with which drought stress occurs.

Free access

C.M. Tankou, B. Schaffer, S.K. O'Hair, and C.A. Sanchez

The effects of applied N and shading duration on net gas exchange and growth of two southern Florida cassava (Manihot esculenta Crantz.) cultivars grown in containers were determined. Both cultivars responded similarly to shading and N with respect to the measured variables. There were no interactions between shading duration and N application rate for any of the variables measured. Tissue dry weights, total leaf N and chlorophyll concentrations, net CO2 assimilation (A), transpiration (E), water-use efficiency (WUE), and stomatal conductance (gs) were quadratically related to the concentration of N applied to the soil. The optimum N application rate for maximum growth of both cultivars was 60 mg/plant per day. Increased shading duration reduced A, E, gs, WUE, storage root number, and weight and increased the shoot : root ratio.