Search Results

You are looking at 1 - 4 of 4 items for :

  • "mulch tillage" x
Clear All
Full access

Shuresh Ghimire, Arnold M. Saxton, Annette L. Wszelaki, Jenny C. Moore and Carol A. Miles

Biodegradable mulches (BDMs) provide a unique advantage to growers in that they can be tilled into the soil after use, eliminating disposal costs that include time, labor, and equipment needs. Biodegradation of BDMs in the soil can be assessed by the presence of visible mulch fragments; although this is not a direct measure of biodegradation, it provides an initial estimation of mulch biodegradation. We carried out three field experiments to develop a protocol for quantifying BDM fragments in the soil after soil incorporation of mulch. Expt. 1 was done at Mount Vernon, WA, and Knoxville, TN, using five BDMs in four replications, including a polyethylene (PE) mulch reference treatment (three replications and at Mount Vernon only), and a ʽCinnamon Girl’ pumpkin (Cucurbita pepo) test crop. At the end of the growing season, mulches were tilled into the soil to a depth of 6 inches and within 16 days, five soil samples were collected with a golf hole cutter (4 inches diameter and 6 inches deep). Fifty-nine percent of the PE mulch fragments were recovered from the reference treatment. Among the remaining treatments, there was a high plot-to-plot variation as to the percent of the BDM recovered (3% to 95% at Mount Vernon, 2% to 88% at Knoxville). To exclude the possibility of mulch degradation impacting mulch recovery, in Expts. 2 and 3 (at Mount Vernon only), one BDM was laid, then tilled into the soil and sampled using the same sampling core as in Expt. 1, but all in 1 day. In Expt. 2, 15 soil samples were collected per plot, which recovered 70% of the mulch, and in Expt. 3, the entire plot was sampled by collecting 128 soil samples per plot, which recovered 62% of the mulch. In summary, sampling with a relatively large core recovered less than 70% of tilled-in mulch, there was high variability between plots within each treatment because of uneven distribution of the mulch fragments in the plot, and even 50 samples per plot did not provide an accurate estimate of the amount of mulch remaining in the field. Thus, soil sampling with a large core was ineffective, and new sampling methods are needed to assess the amount of BDM remaining in the field after soil incorporation.

Free access

Joyce A. Swenson, S. Alan Walters, Michael E. Schmidt and She-Kong Chong

Water management is often the key to successful vegetable culture. Various mulching/tillage systems are often utilized in tomato production, depending upon the available resources of a particular grower, to achieve better water use efficiency. A study was conducted to compare six different mulching/tillage systems to observe the influence of these systems on soil water retention as well as on `Fabulous' tomato (Lycopersicon esculentum Mill.) production. Winter ryegrass and wheat were the cover crops utilized and were mowed with the following six treatments then applied: 1) Conventional tillage (CT), 2) black plastic over conventional tillage (BP), 3) no-till with cover crop sprayed with Glyphosate prior to transplanting (NT-GLY), 4) strip-till with cover crop sprayed with Glyphosate prior to transplanting (ST-GLY), 5) no-till in which cover crop was mowed periodically during the growing season (NT), and 6) strip-till with cover crop mowed periodically during the growing season (ST). This test was conducted under severe drought conditions (45.4 mm of rain from 1 July to 30 Sept. 1999) with plants receiving no supplemental water via irrigation at any time throughout the study. Soil moisture was measured periodically throughout the growing season at a depth of 20 cm; soil and mulch surface temperatures were taken at similar timings as soil moisture. Soil moisture levels during the growing season indicated different patterns of water depletion when comparing the six treatments. There was no significant difference between the winter rye and wheat with respect to water depletion or tomato yields. Lower early tomato yields under NT, ST, NT-GLY, and ST-GLY indicate that cooler soil conditions, while aiding in the retention of soil moisture, delay early tomato production when compared to the warmer soil conditions found under CT and BP. Results also indicate that late season harvests under NT and ST systems produce predominantly cull fruits with a high incidence of blossom-end rot. The NT-GLY and ST-GLY systems tended to produce comparatively lower levels of cull fruit and blossom-end rot in late season harvests than any of the other six treatments.

Full access

Levi Fredrikson, Patricia A. Skinkis and Ed Peachey

net return in soybean ( Glycine max ) Weed Technol. 15 660 668 Shilling, D.G. Worsham, A.D. Danehower, D.A. 1986 Influence of mulch, tillage, and diphenamid on weed control, yield, and quality in no-till flue-cured tobacco ( Nicotiana tabacum ) Weed

Restricted access

Emily E. Braun, Sarah Taylor Lovell, Mohammad Babadoost, Frank Forcella, Sharon Clay, Daniel Humburg and Sam E. Wortman

tomato, 30% in pepper, and 26% in maize ( Forcella, 2012 ; Wortman, 2015 ). However, similar to Carlson et al. (2018) , the combination of abrasive weeding for in-row weed management and supplemental tactics (e.g., mulches, tillage, or flame weeding