Search Results

You are looking at 1 - 10 of 43 items for :

  • "minor crop" x
  • Refine by Access: All x
Clear All
Free access

Milton E. McGiffen Jr., Steven A. Fennimore, W. Thomas Lanini, and Carl E. Bell

160 WORKSHOP 22 (Abstr. 694-695) How Future Usage on Minor Crops Is Likely to be Impacted by the Current Regulatory Process Wednesday, 26 July, 2:00-5:30 p.m.

Free access

Chad Hutchinson

160 WORKSHOP 22 (Abstr. 694-695) How Future Usage on Minor Crops Is Likely to be Impacted by the Current Regulatory Process Wednesday, 26 July, 2:00-5:30 p.m.

Full access

Donald N. Maynard

Full access

Jerry J. Baron, Robert E. Holm, and J. Ray Frank

The pest management industry does not have adequate financial incentives to develop the required data to register pest management tools with government authorities on fruit, vegetables, herbs, spices, nursery crops, landscape plants, flowers, turfgrass, and other specialty crops. Growers of these crops, collectively called minor crops, need pest control tools to be able to sustain production. The Interregional Research Project Number Four (IR-4) was established in 1963 by the U.S. Department of Agriculture to assist growers of minor crops by providing a mechanism to allow growers of these crops to have access to safe and effective pest management tools. Working with research, industrial and extension personnel at the state land-grant institutions and researchers at USDA, Agricultural Research Service, IR-4 develops the appropriate data to support registration of insecticides, fungicides, herbicides and plant growth regulators. Many of the uses of plant growth regulators in current use were developed with oversight provided by IR-4. There are many promising new plant growth regulators and/or uses in the commercial development pipeline and it is anticipated that assistance from IR-4 will be needed to support registration of these new materials on minor crops.

Full access

Marci Spaw, Kimberly A. Williams, Laurie Hodges, Ellen T. Paparozzi, and Ingrid L. Mallberg

, including nutritional disorders and pest problems, and to evaluate cultural practices and environmental conditions related to crop growth and development. Because cut dicentra is a very minor crop, standard production practices are not well established

Free access

Peter Bretting

Plants provide humans with food, fiber, feed, ornamentals, industrial products, medicine, shelter, and fuel. As vegetation, they maintain global environmental integrity and the carrying capacity for all life. From an anthropocentric perspective, plants serve as genetic resources (PGR) for sustaining the growing human population. Research on PGR can provide basic knowledge for crop improvement or environmental management that enables renewable, sustainable production of the preceding necessities. PGR also provide the raw material for increasing yield and end product's quality, while requiring fewer inputs (water, nutrients, agrichemicals, etc.). The staples of life—30 or so major grain, oilseed, fiber, and timber species—comprise the “thin green line” vital to human survival, either directly, or through trade and income generation. Many crop genebanks worldwide focus on conserving germplasm of these staples as a shield against genetic vulnerability that may endanger economies and humanity on an international scale. Fewer genebanks and crop improvement programs conserve and develop “minor crops,” so called because of their lesser economic value or restricted cultivation globally. Yet, these minor crops, many categorized as horticultural, may be key to human carrying capacity—especially in geographically or economically marginal zones. The USDA/ARS National Plant Germplasm System (NPGS) contains a great number and diversity of minor crop germplasm. The NPGS, other genebanks, and minor crop breeding programs scattered throughout the world, help safeguard human global carrying capacity by providing the raw genetic material and genetic improvement infrastructure requisite for producing superior minor crops. The latter may represent the best hope for developing new varieties and crops, new crop rotations, and new renewable products that in the future may enhance producer profitability or even ensure producer and consumer survival.

Free access

Maureen M.M. Fitch, Paul H. Moore, Terryl C.W. Leong, Leslie Ann Y. Akashi, Aileen K.F. Yeh, Susan A. White, Amy S. Dela Cruz, Lance T. Santo, Stephen A. Ferreira, and Leslie J. Poland

This research was funded in part by a University of Hawaii College of Tropical Agriculture and Human Resources Minor Crops Special Funds Grant. We thank C. and D. Gonsalves for help in planting.

Free access

Maureen M.M. Fitch, Paul H. Moore, Terryl C.W. Leong, Leslie Ann Y. Akashi, Aileen K.F. Yeh, Susan A. White, Amy S. Dela Cruz, Lance T. Santo, Stephen A. Ferreira, and Leslie J. Poland

This research was funded in part by a University of Hawaii College of Tropical Agriculture and Human Resources Minor Crops Special Funds Grant. We thank C. and D. Gonsalves for help in planting.

Free access

Carolyn DeMoranville

With dwindling funding for horticultural research, the need to conduct experiments which are the most efficient in terms of resource (including personnel) utilization becomes apparent. Research on minor crops such as cranberry (Vaccinium macrocarpon, Ait.) has been particularly hard-hit by the funding crunch. A study to generate a large database as the basis for future experimental design was initiated in 1986 for the variety `Early Black' (60% of MA commercial acreage). Seasonal nutrient levels for all tissues, patterns of biomass development, components of yield, and fruit development were included. In 1989, the study was expanded to include a comparison of 6 MA varieties grown under the same cultural and environmental condition. A portion of the database will be presented and its implementation to increase field experiment efficiency will be discussed.

Full access

Jeffrey G. Williamson and Jonathan H. Crane

A wide variety of temperate, subtropical, and tropical fruit crops are grown commercially in Florida. Farm size ranges from large commercial operations exceeding 100 acres to small 1- or 2-acre “estate” farms. Irrigation and fertilization practices vary widely with crop, soil type, and management philosophy. However, many growers are adopting practices such as microirrigation, fertigation, and other technologies, which, if properly used, should reduce water and fertilizer inputs and minimize leaching and runoff of fertilizers and pesticides. Although fertilizer and irrigation recommendations exist for major crops such as avocado (Persea americana), mango (Mangifera indica), and blueberry (Vaccinium spp.), there is little research-based information specific to Florida for many minor crops, including muscadine (Vitis rodundifolia), blackberry (Rubus spp.), sapodilla (Manilkara zapota), guava (Psidium guajava), papaya (Carica papaya), and others. Even where recommendations exist, refinement of irrigation and fertilization practices is needed because of changes in technology.