Search Results

You are looking at 1 - 10 of 69 items for :

  • "metam sodium" x
Clear All

Root-knot nematode-resistant `Charleston Belle' bell pepper (Capsicum annuum L. var. annuum) and metam sodium treatment were evaluated for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall-cropped cucumber (Cucumis sativus L.). `Charleston Belle' and its susceptible recurrent parent, `Keystone Resistant Giant', were planted as spring crops at Blackville, S.C., and Tifton, Ga. `Charleston Belle' exhibited high resistance and `Keystone Resistant Giant' was susceptible at both locations. After termination of the bell pepper crop, one-half of the plots were treated with metam sodium delivered through the drip irrigation system. Cucumber yields and numbers of fruit were highest for cucumber grown in plots treated with metam sodium following either `Charleston Belle' or `Keystone Resistant Giant'; however, root gall severity and numbers of M. incognita eggs in the roots were lowest for cucumber grown in plots treated with metam sodium following `Charleston Belle'. Conversely, root gall severity and nematode reproduction were highest for cucumber grown in plots following `Keystone Resistant Giant' without metam sodium treatment. Application of metam sodium through the drip irrigation system following a spring crop of root-knot nematode-resistant bell pepper should reduce severity of root galling and reproduction of M. incognita as well as increase fruit yield of fall-cropped cucumber.

Free access

pesticides to help plant growth and bulb development. Treasure Valley onion fields are commonly fumigated with the commercial fumigant metam sodium to help control weeds, pathogens, and nematodes. Fumigation normally occurs the fall before spring

Full access

Metam sodium has been evaluated on onions in Georgia since the mid-1980s for control of various soil pathogens in the production of transplants. Observations also indicated excellent weed control activity. Further work showed significant growth response of transplants, 90% or better weed control, and efficacy of Phoma terrestris, Fusarium, and Pythium. Results were better in comparison studies than found with methyl bromide, chloropicrin, and other fumigation combinations. This led to use of the product in field production of dry bulb onions. Seven years of studies revealed an average yield increase of 190 bushels per acre over the control, even where Phoma terrestris levels were minimal. Today, almost all transplant production includes the use of metam sodium and field use is beginning to be used by growers. With limited crop rotation being practiced in the Vidalia onion belt, metam sodium will continue to play a major role in controlling the ever-increasing levels of Phoma terrestris and maintaining profitability in onion production in Georgia.

Free access
Authors: and

pathogens from soil-less media or contaminated containers unless they are confined in rooms such as would be used to fumigate fruit for insect control. Metam sodium, on the other hand, is more easily applied in a liquid form as a drench, thereafter releasing

Full access

Experiments at two commercial farms in Bermuda tested the effectiveness of solarization of narrow beds alone and together with metam sodium (MS) to enhance in-field production of broccoli (Brassica oleracea L. var. botrytis L.) and kale (B. oleracea L. var. acephala DC.) transplants. Soil treatments of clear, low-density polyethylene (LDPE) mulch (25 μm), white LDPE mulch (25 μm) plus MS (702 L·ha-1), and clear mulch plus MS were compared to bare soil. Mulches were applied and MS incorporated through rototiller cultivation 20 cm deep into 1.2-m-wide, flat seed-beds in the last week of June 1995. Mulches were maintained for 8 weeks. Either Broccoli `Pirate' or kale `Blue Curled Scotch' were seeded into transplant beds in Warwick and Devonshire parishes, respectively. Stand data was obtained for broccoli and kale 25 and 35 days, respectively, after seeding. Transplants were rated for root infection and biomass at 11 days (broccoli) or 31 days (kale) after seeding. In general, solarization was as effective as MS in suppression of soilborne pathogens of broccoli and kale plants. An additive effect on plant biomass was observed when solarization and MS were combined. All treatments significantly increased the establishment of broccoli plants and decreased root infection by Rhizoctonia solani in both crops. The incidence of Fusarium sp. was significantly decreased by all treatments in kale roots, and in broccoli by MS alone and in combination with solarization. Shoot fresh weight was significantly increased in kale by all treatments and in broccoli by solarization plus MS.

Free access

with MBr for soil-borne disease control. Bell pepper ( Capsicum annuum ) research revealed effective nematode control under mulched beds with preplant applications of 1,3-D + Pic ( Eger, 2000 ; Mirusso et al., 2002 ). Dazomet, metam sodium (MNa) and

Full access

Yield for annual California strawberry (Fragaria ×ananassa Duch.) production systems in soils treated with combinations of methyl bromide–chloropicrin (MB:CP) were compared with four alternative soil treatment systems using meta-analysis. Studies represent 11 production seasons, and were conducted at three distinct locations in California. Fumigation with mixtures of methyl bromide (MB) and chloropicrin (CP) increased yield significantly compared with any and all alternatives lacking MB. In a combined analysis of 45 studies, fumigation with MB:CP compounds increased yield an average of 94.4% (d+ = 2.874 ± 0.098) compared with yields for plants in nonfumigated (NF) soils. Further, the effect of MB:CP fumigation increased over the first three strawberry cultivation cycles: MB:CP–fumigated soils provided a 59.2% (d+ = 2.166 ± 0.146) yield advantage when one cycle of fumigation was omitted, a 100.2% (d+ = 3.000 ± 0.143) advantage when two cycles were omitted, and a 148.4% (d+ = 6.201 ± 0.348) yield advantage when three or more cycles of MB:CP were omitted. In a combined analysis that included 34 studies, soil fumigation with MB:CP conferred a 9.6% (d+ = 0.751 ± 0.087) yield advantage over fumigation with CP alone. Soils treated with MB:CP yielded 6.8% (d+ = 0.437 ± 0.114) more fruit than those treated with very high rates of CP (336–396 kg·ha–1), and 15.4% (d+ = 1.190 ± 0.134) more than soils treated with commercially realistic rates (168–224 kg·ha–1). Similar to the comparison using NF soils, the efficacy of very high rates of CP appeared to diminish over cycles of strawberry cultivation; MB:CP increased yield 2.2% (d+ = 0.043 ± 0.162) in the first CP production cycle, 10.6% (d+ = 0.588 ± 0.174) and 13.7% (d+ = 2.054 ± 0.401) in the following two cycles. Combinations of dichloropropene (DP) and CP were no more effective than were lower rates of CP alone, and MB:CP conferred a 14.4% (d+ = 0.962 ± 0.162) yield advantage over mixtures of DP:CP. Mixtures of MB:CP increased yield 29.8% (d+ = 3.199 ± 0.287) compared with metam sodium (MS). The standardized effect was similar when comparing MB:CP combinations with either MS or NF soils, suggesting little effect of MS on the yield response. Chemical names used: trichloronitromethane (chloropicrin); 1,3-dichloropropene (dichloropropene); sodium N-methyldithiocarbamate (metam sodium).

Free access

The loss of methyl bromide (MB) as a soil fumigant has created the need for new weed management systems for crops such as strawberry (Fragaria ×ananassa Duchesne). Potential alternative chemicals to replace methyl bromide fumigation include 1,3-D, chloropicrin (CP), and metam sodium. Application of emulsified formulations of these fumigants through the drip irrigation system is being tested as an alternative to the standard shank injection method of fumigant application in strawberry production. The goal of this research was to evaluate the weed control efficacy of alternative fumigants applied through the drip irrigation system and by shank injection. The fumigant 1,3-D in a mixture with CP was drip-applied as InLine (60% 1,3-D plus 32% CP) at 236 and 393 L·ha-1 or shank injected as Telone C35 (62% 1,3-D plus 35% CP) at 374 L·ha-1. Chloropicrin (CP EC, 95%) was drip-applied singly at 130 and 200 L·ha-1 or shank injected (CP, 99%) at 317 kg·ha-1. Vapam HL (metam sodium 42%) was drip-applied singly at 420 and 700 L·ha-1. InLine was drip-applied at 236 and 393 L·ha-1, and then 6 d later followed by (fb) drip-applied Vapam HL at 420 and 700 L·ha-1, respectively. CP EC was drip-applied simultaneously with Vapam HL at 130 plus 420 L·ha-1 and as a sequential application at 200 fb 420 L·ha-1, respectively. Results were compared to the commercial standard, MB : CP mixture (67:33) shank-applied at 425 kg·ha-1 and the untreated control. Chloropicrin EC at 200 L·ha-1 and InLine at 236 to 393 L·ha-1 each applied singly controlled weeds as well as MB : CP at 425 kg·ha-1. Application of these fumigants through the drip irrigation systems provided equal or better weed control than equivalent rates applied by shank injection. InLine and CP EC efficacy on little mallow (Malva parviflora L.) or prostrate knotweed (Polygonum aviculare L.) seed buried at the center of the bed did not differ from MB : CP. However, the percentage of weed seed survival at the edge of the bed was often higher in the drip-applied treatments than in the shank-applied treatments, possibly due to the close proximity of the shank-injected fumigant to the edge of the bed. Vapam HL was generally less effective than MB : CP on the native weed population or on weed seed. The use of Vapam HL in combination with InLine or CP EC did not provide additional weed control benefit. Chemical names used: 1,3-dichloropropene (1,3-D); sodium N-methyldithiocarbamate (metam sodium); methyl bromide; trichloro-nitromethane (chloropicrin).

Free access

Solarization and chemical alternatives to methyl bromide (MeBr) soil fumigation for strawberry (Fragaria {XtimesX} ananassa) were evaluated in a 3-year study in Savannah, Ga. Solarization using clear or black plastic, metam sodium (Sectagon), dazomet (Basamid), 1,3-dichloropropene and chloropicrin (Telone C-35), MeBr, and untreated control treatments were used. Solarization produced maximal soil temperatures of 55 to 60 °C (131 to 140 °F) at the 2.5 cm (1 inch) depth, and 42 to 48 °C (108 to 118 °F) at the 15 cm (6 inch) depth. Clear and black plastic were generally equally effective in heating the soil. A double layer of clear plastic raised soil temperatures 1 to 2 °C (2 to 4 °F) above those under a single layer of clear at the 2.5 cm depth, although this occurred less frequently at the 15 cm depth. MeBr treatment increased yield by 46% and 128% in the first and second years, respectively, compared to the untreated control, but all treatments were similar in yield in year three. Season average fruit size differed among treatments in only the first year, with MeBr resulting in fruit 13% to 25% larger than other treatments. Yield for the metam sodium treatment in the first year was 34% lower than for MeBr, but comparable to MeBr in the other 2 years. Solarization treatment yields were similar to those of MeBr in the first and third years, but could not be analyzed in the second year due to plot damage. Dazomet treatment yields were similar to those of MeBr, metam sodium, and the untreated control in its single year of testing, but logistics of application and high costs may disfavor this treatment. The 1,3-dichloropropene/chloropicrin treatment performed as well as MeBr in its single year of testing. Three treatments-metam sodium, 1,3-dichloropropene/chloropicrin, and solarization with black plastic-offer viable, lower cost alternatives to MeBr.

Full access

; Rieger et al., 2001 ; Ristaino and Thomas, 1997 ; Rosskopf et al., 2005 ; Schneider et al., 2003 ). A few products that have a long history of use include 1,3-dichloropropene, metam sodium, chloropicrin, and combinations of these [e.g., 61.1% 1

Full access