Search Results

You are looking at 1 - 10 of 57 items for :

  • "medium composition" x
Clear All
Free access

Yin-Tung Wang and Elise A. Konow

Research was conducted to investigate the interaction of water-soluble fertilizer and medium composition on vegetative growth and the concentration of mineral nutrients in media and in leaves of a hybrid moth orchid (Phalaenopsis Blume.). The vegetatively propagated `TSC 22' clone of the hybrid Phalaenopsis Atien Kaala plants 15 cm in leaf spread were potted in a medium consisting of either 100% fine grade douglas fir [Pseudotsuga menziesii (Mirb.) Franco] bark or a mixture of 7 fir bark: 3 sphagnum peat (by volume). Plants were fertigated at each irrigation with a soluble 10N-13.1P-16.6K, 20N-2.2P-15.8K, or 20N-8.6P-16.6K fertilizer, or a 2N-0.4P-1.7K liquid fertilizer at a common N rate of 200 mg·L-1. After 1 year in a greenhouse, plants grown in the bark-peat medium produced more leaves, greater fresh weights (FW), and larger total leaf areas than those in 100% bark. In the bark medium, the 20N-2.2P-15.8K fertilizer resulted in plants of the highest quality, despite its low P concentration (22 mg·L-1). When grown in bark-peat, the two fertilizers (20N-2.2P-15.8K and 20N-8.6P-16.6K) containing urea as part of their N source (10% and 52%, respectively) resulted in plants with 40% to 50% heavier shoot FW and 40% larger leaf area than the other fertilizers without urea. With any given fertilizer, plants had similar root FW in both media. Media and fertilizers had limited or no effect on the concentrations of mineral nutrients in the second mature acropetal leaves, except P, which nearly doubled in leaves of plants grown in 100% bark. High leaf Mg concentration was associated with low Ca. Water extracts from the bark-peat medium had lower pH, higher electrical conductivity, and much higher levels of NH4-N, Ca, Fe, Na, Cl, B, and Al than those from 100% bark. Extracts from the bark medium did not have detectable levels of NO3-N, whereas extracts from the bark-peat medium all had similar levels of NH4-N, regardless of which fertilizer was applied. Levels of P and K were not different between the two media.

Free access

Su-Jeong Kim, Chun-Woo Nam, Dong-Lim Yoo, Jong-Taek Suh, Myoung-Rae Cho and Ki-Sun Kim

This study was conducted to overcome the problems occurring in soil cultured Sandersonia, such as secondary tuber formation, tuber russeting, browning and surface cracking. For the tuber production, soilless culture medium compositions (peatmoss, perlite, cocopeat) and harvesting times [4, 6, 8, 10, and 12 weeks after flowering time (WAF)] were compared. The mother tubers were planted and grown in a plastic box (40 × 60 × 23 cm) under a PE film house with shading in summer season. The tuber number and weight were higher in peatmoss-based media of peatmoss, 1 peatmoss: 1 perlite, and 2 peatmoss: 1 perlite (by volume) than in the other media. Particularly, the plant height and the numbers of leaf and flower were also higher. The contents of total nitrogen and phosphorus in leaves were lower when the tubers were grown in perlite. Leaf area index per plant reached the maximum at 8 WAF and decreased thereafter. The optimal harvesting time for tuber production was 8-10 WAF.

Full access

Myung Min Oh, Young Yeol Cho, Kee Sung Kim and Jung Eek Son

size, wick length and width, and medium composition affected irrigation time and frequency for good plant growth in the NFW system. Thus, the objectives of this study were to analyze the factors affecting the water content of growing medium in the NFW

Free access

Becky R. Hughes*, Wanda J. Cook and Candy N.F. Keith

In vitro rooting and subsequent greenhouse survival of `Autumn Britten', `Boyne', `Comet',`Nova' and `Qualicum' raspberry (Rubus idaeus L.) plantlets were compared following four weeks on a rooting medium with and without activated charcoal, and with 0.1, 0.5, 1.0, 2.0 or 3.0 milligrams per litre IBA. The addition of charcoal significantly increased the percentage of plantlets that produced roots in vitro for the hard-to-root cultivars. Percent rooting in vitro was highest with the three lower levels of IBA. Root number was influenced only by the cultivar, while root diameter and length were affected by all the factors investigated. Greenhouse survival was affected by the cultivar, the presence or absence of charcoal and the IBA level in the in vitro rooting medium, with significant interactions. Provided charcoal was present in the rooting medium, the level of IBA didn`t alter survival. The addition of charcoal to the rooting medium improved greenhouse survival of the three hardest-to-root cultivars. Plug plant stem length; internode length and dry weight were increased by the presence of charcoal in the in vitro rooting medium for all but the easiest to establish cultivar. Chemical names used: 3-indolebutyric acid (IBA).

Free access

Chris A. Martin and Dewayne L. Ingram

Thermal properties of pine bark: sand container media as a function of volumetric water content and effectiveness of irrigation as a tool for modulating high temperatures in container media were studied. Volumetric water and sand content interacted to affect container medium thermal diffusivity. Adding sand to a pine bark container medium decreased thermal diffusivity if volumetric water content was less than 10 percent and increased thermal diffusivity if volumetric water content was between 10 and 70 percent. Thermal diffusivity was greatest for a 3 pine bark : 2 sand container medium if volumetric water content was between 30 and 70 percent. Irrigation was used to decrease temperatures in 10-liter container media. Irrigation water at 26°C was more effective if 1) volumes equaled or exceeded 3000 ml, 2) applications were made during mid-day, and 3) sand was present in the container medium compared to pine bark alone. However, due to the volume of water required to lower container media temperatures, nursery operators should first consider reducing incoming irradiance via overhead shade or container spacing.

Free access

Yin-Tung Wang and Elise A. Konow

Vegetatively propagated Phalaenopsis Atien Kaala `TSC 22' plants 10 cm in leaf spread were potted in a medium that consisted of either 100% fine grade Douglas fir bark or a mixture of 70% fir bark and 30% sphagnum peat. Plants were fertigated at each irrigation with 10N-13.1P-16.6K (10-30-20), 20N-2.2P-15.8K (20-5-19), 20N-8.6P-16.6K (20-20-20), or a 2N-0.4P-1.7K (2-1-2) liquid fertilizer at a common N rate of 200 mg•L-1. After 1 year in a greenhouse, plants grown in the bark/peat medium produced more leaves and had heavier fresh weights and larger total leaf areas than those in 100% bark. In the bark medium, the 20N-2.2P-15.8K fertilizer resulted in best plants, despite its low P concentration (22 mg•L-1). When grown in bark/peat, the two fertilizers (20N-2.2P-15.8K and 20N-8.6P-16.6K) containing urea as part of their N source (10% and 52%, respectively) resulted in plants with 40% to 50% heavier shoot fresh weight and 40% larger leaf area than the other fertilizers. With any given fertilizer, plants had similar root weights in both media. Media and fertilizers had limited or no effect on the concentrations of minerals in the second mature acropital leaves except P, the concentration of which nearly doubled in leaves of plants grown in 100% bark. Water extracts from the bark/peat medium had lower pH, higher EC, and elevated levels of NH4-N, Ca, Fe, Na, Cl, B, and Al than those from 100% bark. Exacts from the bark medium did not have detectable levels of NO3-N, whereas extracts from the bark/peat medium all had similar levels of NO3-N, regardless of which fertilizer was applied.

Free access

Sadanand A. Dhekney, Zhijian T. Li, Michael E. Compton and Dennis J. Gray

). Identification of one to a few useful culture media would facilitate initiation of embryogenic cultures for Vitis species and varieties. We studied factors including explant type and developmental stage, medium composition, and growth regulator concentrations

Free access

Qingrong Sun, Meijuan Sun, Hongyan Sun, Richard L. Bell, Linguang Li, Wei Zhang and Jihan Tao

-3-150, 60-160, ПБ, JM7, and Y, were compared. The effects of various basal medium and growth regulator combinations on shoot regeneration were examined. The effect of basal medium composition on rooting capacity was also investigated. The optimal conditions

Free access

Seong Min Woo and Hazel Y. Wetzstein

Georgia plume, Elliottia racemosa Muhlenb. ex. Elliott, is an extremely rare small tree or shrub endemic to Georgia, which is being severely affected by habitat loss and lack of sexual recruitment. In vitro plant regeneration of Georgia plume has not been previously reported and may be a method for the conservation and propagation of this threatened species. Studies evaluated the effects of sterilization methods, explant types, medium composition, and light environment on plant regeneration. An efficient plant regeneration system was developed in which adventitious shoot buds were induced using young, expanding leaf explants placed on an induction medium supplemented with 10 μm thidiazuron and 5 μm indole-3-acetic acid with Gamborg's B5 salts. Shoot elongation was promoted on a medium with 25 μm (2-isopentenyl) adenine incorporated into Woody Plant Medium. In vitro rooting studies evaluated continuous and pulse auxin treatments and ex vitro rooting trials after KIBA (indole-3-butric acid, potassium salt) dips. A 5-day pulse treatment on 100 or 150 μm indole-3-butyric acid produced ≈90% rooting of shoots with greater shoot and root dry weight than other pulse times. High rooting frequencies were obtained under in vitro and ex vitro conditions with over 85% survival of plantlets transferred to greenhouse conditions. The culture protocol was found to be effective with material collected from mature specimens in the wild from divergent populations. Tissue culture appears to be a promising approach for the propagation and conservation of this rare and threatened plant.

Free access

M. Arenas, C.S. Vavrina, J.A. Cornell, E.A. Hanlon and G.J. Hochmuth

Sixteen media prepared from peat, coir, vermiculite, or perlite were used to determine the optimum growing media for tomato (Lycopersicum esculentum Mill.) transplants. Medium composition did not affect tomato seed emergence, although seedling emergence was higher in winter (90%) than summer (85%). Greatest transplant root dry weight, stem diameter, and leaf area were achieved in 50% to 75% peat + 25% to 50% vermiculite in summer. In winter, greatest transplant root dry weight, stem diameter, and leaf area were achieved in eight media: 100% peat, 75% peat + 25% vermiculite, 75% peat + 25% perlite, 50% peat + 50% vermiculite, 50% peat + 50% perlite, 25% peat + 50% coir + 25% vermiculite, 50% peat + 25%coir + 25% vermiculite, and 25% peat +25% coir +25% vermiculite +25% perlite. Transplants grown with >50% coir exhibited reduced plant growth compared to peat-grown transplants, a response that may be associated with high N immobilization by microorganisms and high C:N ratio. Despite transplant growth differences during the summer, fruit yields generally were unaffected by transplant media.