Search Results

You are looking at 1 - 10 of 129 items for :

  • "low temperature storage" x
Clear All
Free access

Ming Ding, Beibei Bie, Wu Jiang, Qingqing Duan, Hongmei Du and Danfeng Huang

; FAOSTAT, 2009 ) and the demand for watermelon seedlings (≈33 billion per year in China), seedling storage is essential for meeting market demands. The most common method of preserving seedlings for a short-term period is low-temperature storage in darkness

Free access

A.P. Medlicott, J.M.M. Sigrist and O. Sy

The effects of harvest maturity of mangos (Mangifera indica L.) on storage tinder various low-temperature regimes and the influence of storage on quality development during subsequent ripening at higher temperatures were investigated. The capacity for storage of mango fruit depended on harvest maturity, storage temperature, and the time of harvest within the season. Development of peel and pulp color, soluble solids concentration, pH, and softening in `Amelie', `Tommy Atkins', and `Keitt' mangos occurred progressively during storage for up to 21 days at 12C. Based on the level of ripening change that occurred during 12C storage, immature fruit showed superior storage capacity than fruit harvested at more-advanced stages of physiological maturity. On transfer to ripening temperatures (25C); however, immature fruit failed to develop full ripeness characteristics. Mature and half-mature fruit underwent limited ripening during storage at 12C, the extent of which increased with progressive harvests during the season. Ripening changes during storage for 21 days were less at 8 and 10C than at 12C. Chilling injury, as indicated by inhibition of ripening, was found at all harvest stored at 8C, and in early season harvests stored at 10C. Fruit from mid- and late-season harvests stored better at 10 than at 12C, with no apparent signs of chilling injury. Flavor of mangos ripened after low-temperature storage was less acceptable than of those ripened immediately after harvest. Suggestions are made for maximizing storage potential by controlling harvest maturity and storage temperature for progressive harvests throughout the season.

Open access

Ming-Wei S. Kao, Jeffrey K. Brecht and Jeffrey G. Williamson

. Evaluations were made at harvest, after ripening at 20 °C for 7 d (i.e., direct ripening), or after storage at 0 °C for 14 d, then ripening at 20 °C for 7 d (i.e., ripening following low temperature storage). From the physical and chemical characteristics

Free access

Chieri Kubota, Nihal C. Rajapakse and Roy E. Young

Broccoli (Brassica oleracea L. Botrytis Group `Green Duke') and Hosta tokudama F. Maekawa `Newberry Gold' plantlets, which were ready for transplanting after photoautotrophic (sugar-free) culture, were stored 4 to 6 weeks at 5C under various light qualities and photosynthetic photon fluxes (PPF). Illumination during storage maintained quality, photosynthetic ability, and regrowth potential of plantlets stored at low temperature. PPF affected quality of broccoli and Hosta plantlets. Broccoli plantlets responded to storage light quality, while Hosta did not. White light maintained the quality of broccoli plantlets better during 6 weeks of storage than did red or blue light. Red and blue light caused an increase in internode length and reduction in chlorophyll concentrations compared to white light. Photosynthetic and regrowth potentials of plantlets were not affected by spectral quality during storage. Considering changes in dry weight, stem length, and leaf yellowing, the quality of broccoli plantlets was best maintained under white light at 2 μmol·m–2·s–1 PPF. PPF and light quality were shown to be important factors in the preservation of transplant quality and suppression of growth of the plantlets during low-temperature storage.

Free access

M.S. Padda and D.H. Picha

Sweetpotatoes may be potentially high in concentration of certain phytochemical compounds, including phenolics. Low temperature stress-induced phenolic compounds may enhance the nutraceutical value of sweetpotatoes. However, extended exposure to low temperature results in chilling injury. Cured and non-cured roots of `Beauregard' sweetpotatoes were exposed to low temperature storage (5 °C) for up to 4 weeks. The total phenolics and individual phenolic acid contents were determined at weekly intervals using Folin-Denis reagent and reversed-phase HPLC, respectively. Total phenolics and individual phenolic acids increased with length of low temperature exposure. Non-cured roots had a higher phenolic content than cured roots after 4 weeks. A 3-day exposure period to room temperature (22 °C) following removal from low temperature storage typically resulted in increased phenolics. In a comparison of different tissue locations, the highest phenolic content was found in peel tissue and the lowest in the pith tissue. The major individual phenolic acid in all root tissues was chlorogenic acid.

Free access

Nihal C. Rajapakse, William B. Miller and John W. Kelly

Low-temperature storage potential of rooted cuttings of garden chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] cultivars and its relationship with carbohydrate reserves were evaluated. Storage of chrysanthemum cuttings at -1 and -3 °C resulted in freezing damage. Visual quality of rooted cuttings stored at 0 or 3 °C varied among cultivars. Quality of `Emily' and `Naomi' cuttings was reduced within a week by dark storage at 0 or 3 °C due to leaf necrosis, while `Anna' and `Debonair' cuttings could be held for 4 to 6 weeks without significant quality loss. In `Anna' and `Debonair', low-temperature storage reduced the number of days from planting to anthesis regardless of storage duration. However, flowers of plants grown from stored cuttings were smaller than those of nonstored cuttings. At the beginning of storage, `Emily' and `Naomi' had lower sucrose, glucose, and fructose (soluble sugars) content compared to `Anna' and `Debonair'. Regardless of temperature, leaf soluble sugar was significantly reduced by dark storage for 4 weeks. In stems, sucrose and glucose were reduced while fructose generally increased during low-temperature storage probably due to the breakdown of fructans. Depletion of soluble sugars and a fructan-containing substance during low-temperature dark storage was greater in `Emily' and `Naomi' than in `Anna' and `Debonair'. Low irradiance [about 10 μmol·m-2·s-1 photosynthetically active radiation (PAR) from cool-white fluorescent lamps] in storage greatly improved overall quality and delayed the development of leaf necrosis in `Naomi'. Cuttings stored under light were darker green and had a higher chlorophyll content. Leaf and stem dry weights increased in plants stored under medium and high (25 to 35 μmol·m-2·s-1 PAR) irradiance while no change in dry weight was observed under dark or low light. Results suggest that the low-temperature storage potential of chrysanthemum cultivars varies considerably, and provision of light is beneficial in delaying the development of leaf necrosis and maintaining quality of cultivars with short storage life at low temperatures.

Free access

Khalid N. Al-Redhaiman, Gail R. Nonnecke and Richard J. Gladon

'Honeoye' (June-bearing) and 'Tristar' (day-neutral) strawberries were harvested, graded, and then stored for 7 days et 2C or 21C in air (control) or each of these 8 modified atmospheres: 1.5% O2, 3.5% O2, 15% CO2, 25% CO2, 1.5% O2 + 15% CO2, 1.5% O2 + 25% CO2, 3.5% O2 + 15% CO2, and 3.5% O2 + 25% CO2; all balance N2. When compared with storage at 21C, storage at 2C reduced weight loss and gray mold growth in all corresponding sets of storage atmosphere treatments. The combination of increased CO2 and decreased O2 controlled weight loss and gray mold growth more effectively than treatment with reduced O2 alone. Storage at 2C (versus 21C) reduced respiration of both cultivars. Respiration decreased as the O2 concentration decreased. 'Tristar' did not produce C2H4 at either temperature, whereas `Honeoye' produced more C2H4 at 21C than it did at 2C. Increased CO2 and/or decreased O2 concentrations in the storage atmosphere are not satisfactory substitutes for proper low-temperature storage of strawberries.

Free access

Chieri Kubota and Toyoki Kozai

Broccoli (Brassica oleracea L. Botrytis Group `Ryokurei') plantlets, cultured photoautotrophically (without sugar in the medium) in vitro for 3 weeks at 23C and 160 μmol·m–2·s–1 photosynthetic photon flux (PPF), were stored for 6 weeks at 5, 10, or 15C under 0 (darkness) or 2 μmol·m–2·s–1 PPF (continuous lighting) supplied by fluorescent lamps (white light). Dry weight of the plantlets stored for 6 weeks at 5 or 10C in light was not significantly different from that of the plantlets before storage. Dry weight of the plantlets decreased as temperature increased and was maintained at higher levels in light than in darkness. Chlorophyll concentrations of the plantlets were higher at the lower temperatures. Chlorophyll fluorescence kinetics indicated higher activities of chlorophyll of the plantlets stored in light than in darkness. Lighting at as low as 2 μmol·m–2·s–1 PPF was important to preserve photosynthetic and regrowth abilities and dry weight of the plantlets during low-temperature storage.

Open access

Akide Özcan

. Dicenta, F. 2002 Low-temperature storage of almond pollen HortScience 37 691 692 Norton, J.D. 1966 Testing of plum pollen viability with tetrazolium salts Proc. Amer. Soc. Hort. Sci. 89 132 134 Özcan, A. Bükücü, Ş.B. Sütyemez, M. 2017 Determination of

Free access

Efstratia Papanikou and Paul H. Jennings

Previous research has shown that low-temperature storage can be used to maintain bedding plants in plug trays when weather conditions in spring make scheduling of transplanting difficult. The objective of this study was to determine what physiological changes occur during the short-term, low-temperature storage of plug seedlings. Plants of two bedding plant species, Geranium and Vinca, were stored at 2, 6, or 10°C and under low light or dark conditions for 4 weeks. Data were collected at three sampling dates (0, 2, or 4 weeks after beginning of storage) and included dry and fresh mass, total leaf area, leaf chlorophyll content and chlorophyll fluorescence as well as electrolyte leakage and soluble sugar content of leaf and root tissue. The parameters will be discussed in relationship to plug seedling survivability, quality, and growth responses under the experimental storage treatments.