Search Results

You are looking at 1 - 3 of 3 items for :

  • "linolenic fatty acid" x
  • Refine by Access: All x
Clear All
Free access

Harbans L. Bhardwaj and Anwar A. Hamama

Although sprouts have played a significant role in human nutrition, there is a lack of information about sprouts made from seed of canola, a new crop in the United States as a source of edible and industrial-use oil. We studied oil content and fatty acid composition in sprouts made from seed of four canola cultivars (Banjo, KS 8200, KS 8227, and Virginia) grown at three locations in Virginia (Orange, Petersburg, and Suffolk) during 2001–2002 and 2002–2003 crop seasons. Canola cultivars exhibited significant effects on contents of oil and all fatty acids except for C20:0, whereas growing locations only affected contents of oil and C22:0, C18:2, and C18:3 fatty acids in the sprouts. The contents of oil and C16:0, C18:0, C20:0 C22:0, C24:0, C16:1, C18:1, C18:2, C18:3, C20:1, C22:1, total saturated, total unsaturated, monounsaturated, and polyunsaturated in canola sprouts were 27.33%, 5.38%, 1.21%, 0.53%, 0.27%, 0.15%, 0.68%, 45.71%, 18.35%, 8.82%, 7.44%, 11.46%, 7.54%, 92.46%, 60.18%, and 27.17% of total fatty acids, respectively. The ratio of C18:2 to C18:3 fatty acids in canola sprouts averaged 1.00 to 2.09 with Virginia cultivar having the highest ratio (2.33) and KS 8227 having the lowest ratio (1.91). These ratios were within the recommended ratios of 1.00 to 4.00 for optimal human nutrition. Our results indicated that, based only on oil and fatty acid contents, canola sprouts may be healthier than alfalfa, brussels sprout, mungbean, and radish sprouts.

Free access

Sameera Bafeel* and Frank Matta

Temperature is a major environmental factor governing the distribution of both wild and cultivated plant species. During acclimation and deacclimation plants undergo a series of metabolic changes that lead to cold hardiness or loss of hardiness. One of these changes is the accumulation of certain lipids. This research was conducted to compare hardiness among three pecan cultivars: `Desirable', `Jackson', and `Owens' growing under Mississippi condition and to determine the relationship between fatty acid levels and cold hardiness of pecan shoots. Differential thermal analysis (DTA), electrical conductivity, and tetrazolium tests were used to determine cold hardiness. Pecan stems were collected from September to March in 2002 and 2003 to determine cold acclimation and deacclimation. Fatty acid composition of pecan stems during this time period was determined by gas chromatography. DTA indicated that pecan stems acclimated in October and deacclimated in March. During cold acclimation, there was a shift in the fatty acid composition to more unsaturated fatty acids. The percentage of linoleic and linolenic fatty acids increased, while the percentage of palmitic and stearic fatty acids decreased. The correlation between unsaturated fatty acids and cold hardiness suggests that unsaturated fatty acid may play a role in membrane fluidity.

Open access

Yingchao Lin, Dejun Kong, Zhihong Wang, Yi Chen, Zhixiao Yang, Chun Wu, Hui Yang, and Lili Chen

oil, the yield of palmitic, stearic, oleic, linoleic, and linolenic fatty acids generally increased significantly at higher N rates (120 or 150 kg·ha −1 N) compared with that in the control ( Table 5 ). Generally, the highest yield of fatty acids in