Search Results

You are looking at 1 - 10 of 31 items for :

  • "leaf: fruit ratio" x
  • All content x
Clear All
Free access

Ben-Hong Wu, Ning Niu, Ji-Hu Li, and Shao-Hua Li

, which is achieved by increasing the leaf:fruit ratio, generally leads to a larger fruit size in grapes ( Petrie et al., 2000 ) as well as mango [ Mangifera indica ( Chacko et al., 1982 ; Léchaudel et al., 2005 )] and peach [ Prunus persica ( Souty et

Free access

Seong-Tae Choi, Doo-Sang Park, Seong-Mo Kang, and Seong-Koo Kang

. Soluble solids at the L/F ratio of 20 and 10 were both 17.7 °Brix for the 0 g N but decreased to 15.9 and 16.3 °Brix for the 40 g N, respectively. Table 1. Effect of leaf/fruit ratios and nitrogen (N) rates on fruit characteristics of ‘Fuyu’ persimmon. z

Free access

Timothy E. Elkner, J. A. Barden, M. M. Kushad, and D. D. Wolf

Fruiting spurs (`Red Prince Delicious') (RD) and shoots (`Sundale Spur Golden Delicious') (CD) with three leaf:fruit ratios and comparable nonfruiting spurs and shoots were girdled on 7 September 1988. An interaction between fruiting status and time existed for most parameters measured on both cultivars while there was no effect of leaf:fruit ratio. At 1 day after treatment (DAT) few differences existed due to fruiting status on either cultivar. At 8 DAT with RD and at 4 and 8 DAT with GD, Pn, transpiration (Tr), leaf water potential (ψ L), and nonreducing sugars were greater on fruiting than nonfruiting spurs and shoots while leaf resistance (RL), SLW, and starch were lower on fruiting spurs. In nonfruiting spurs and shoots Pn, Tr, and ψL tended to decrease while RL and SLW increased with time whereas m fruiting spurs and shoots most parameters remained constant. Total nonstructural carbohydrates, reducing sugars, and starch were greater in nonfruiting than fruiting spurs and shoots.

Free access

A. Klieber, W.C. Lin, P.A. Jolliffe, and J.W. Hall

Various stem-training systems were applied to greenhouse-grown `Mustang' cucumber (Cucumis sativus L.) plants at two production stages. Training systems determined the number of stems per plant, orientation of laterals, and leaf: fruit ratio. Training systems permitting high canopy light penetration resulted in darker fruit and a longer shelf life. Shelf life was positively related to rapid fruit growth in Expt. 1 but not in Expt. 2. Training systems to achieve a long shelf life of greenhouse-grown long English cucumber are described.

Free access

Michel Génard and Claude Bruchou

An approach to studying fruit growth is presented for peach fruit (Prunus persica L. Batsch). It combines a functional description of growth curves, multivariate exploratory data analysis, and graphical displays. This approach is useful for comparing growth curves fitted to a parametric model, and analysis is made easier by the choice of the model whose parameters have a meaning for the biologist. Growth curves were compared using principal component analysis (PCA) adapted to the table of estimated parameters. Growth curves of 120 fruits were fitted to a model that assumes two growth phases. The first one described the pit growth and the first part of the flesh growth. The second described the second part of the flesh growth. From PCA, firstly it was seen that fruit growth varied according to cumulated growth during both growth phases and to date of maximal absolute growth. Secondly, fruit growth varied according to cumulated growth and relative growth rates during each phase. Further examples are presented where growth curves were compared for varying fruit number per shoot and leaf: fruit ratio, and for different sources of variation (tree, shoot, and fruit). Growth of individual fruit was not related to fruit number per shoot or to leaf: fruit ratio. Growth variability was especially high between fruit within shoots.

Free access

Duane W. Greene, Wesley R. Autio, and Paul Miller

Postbloom sprays of BA thinned `McIntosh', `Delicious', `Golden Delicious', `Mutsu, `Empire', and `Abas' apples. BA at 75 to 100 mg·liter-1 was equal to NAA at 6 to 7.5 mg·liter-1 or carbaryl at 600 to 800 mg·liter-1. BA increased fruit size, flesh firmness, and soluble solids concentration (SSC) on all cultivars evaluated. Since BA is applied during the time when cell division is occurring, it is concluded that the increased fruit size and flesh firmness were due to Increased cell numbers. Increased SSC was not due solely to increased leaf: fruit ratio. Thinning with BA was additive with other chemical thinners and no interactions were found on fruit abscission. In most eases, BA increased return bloom. Chemical names used: N-(phenylmethyl)1H-purine-6-amine [benzyladenine (BA)]; 1-naphthaleneacetic acid (NAA); 1-naphthalenyl methylcarbamate (carbaryl); butanedioic acid mono(2,2dimethylhydrazide (daminozide); (2-chloroethyl)phosphonic acid (ethephon).

Free access

Michel Génard and Michel Souty

The edible quality of peaches (Prunus persica L. Batsch) to a great extent depends on their sweetness, which is related to sugar composition. Our objective was to develop a model to predict carbon partitioning within fruit flesh and to predict the sucrose, sorbitol, glucose, and fructose contents. The model is dynamic and deterministic and was designed to be driven by the flesh dry-weight growth curve, flesh water content, and temperature data. It uses differential equations where the state of the system is defined by variables that describe how much carbon is present as each form of sugar and as other compounds (acids and structural carbohydrates). The rates of change of these amounts of carbon depend on the current values of corresponding variables and on the transfer functions between them. These functions are defined by rate constants or by functions of degree-days after full bloom. The model was calibrated and tested using data sets from treatments that covered several leaf: fruit ratios. The predictions of the model were in fairly good agreement with experimental data. A sensitivity analysis was performed to identify the most influential transfer function parameters. Carbon flows between sugar forms were analyzed. Sucrose, which was the most abundant sugar, and fructose, which is the sweetest, contributed most to fruit sweetness. Simulations were performed to study the effects of changes in fruit growth-curve parameters on sugar contents and concentrations.

Free access

J.G. Williamson, B.E. Maust, and D.S. NeSmith

The effects of hydrogen cyanamide (H2CN2) sprays on vegetative and reproductive bud growth and development were evaluated for `Climax' rabbiteye (Vaccinium ashei Reade) and `Misty' southern highbush blueberry (V. corymbosum L. hybrid). `Climax' plants were sprayed with 0% or 1% H2CN2 (v/v) at each of several time intervals or flower bud growth stages following either 270 or 600 hours of artificial chilling. `Misty' plants were sprayed with 0%, 1%, or 2% H2CN2 (v/v) immediately after exposure to 0, 150, or 300 hours of artificial chilling. H2CN2 application to `Climax' plants at 3 days after forcing (DAF) and at 10% to 30% stage 3 flower bud development dramatically accelerated leafing, and only minimal flower bud damage was observed at these application times. For `Misty', vegetative budbreak was increased and advanced by both H2CN2 spray concentrations, regardless of pretreatment chilling levels; the number of vegetative budbreaks per plant increased with increased concentration. Timing of anthesis did not appear to be affected by H2CN2, but fruit maturity was hastened. Increased pretreatment chilling also hastened fruit development. This effect on maturity appears to be due primarily to increased and accelerated vegetative budbreak, which probably increased leaf: fruit ratios. Greater flower bud mortality from H2CN2 occurred in nonchilled plants than in those chilled for 150 or 300 hours, especially at 2% H2CN2. These results indicate that H2CN2 has potential value in stimulating vegetative bud development, which potentially hastens maturity in blueberries grown under the mild winter conditions of the Southeast. However, spray concentration and timing of application will be critical to successful use of this compound.

Free access

Graham H. Barry, William S. Castle, Frederick S. Davies, and Ramon C. Littell

Variability in fruit quality of citrus occurs among and within trees due to an interaction of several factors, e.g., fruit position, leaf: fruit ratio, and fruit size. By determining variability in fruit quality among i) fruit, ii) trees, iii) orchards, and iv) geographic locations where citrus is produced in Florida, optimal sample size for fruit quality experiments can be estimated. To estimate within-tree variability, five trees were randomly selected from each of three `Valencia' orange orchards in four geographic locations in Florida. Six fruit were harvested from each of two tree canopy positions, southwest top and northeast bottom; fruit were not selected or graded according to fruit size. °Brix and titratable acidity of juice samples were determined, and the °Brix: acid ratio was calculated. Statistical analysis of fruit quality variables was done using a crossed-nested design. The number of trees to sample and the number of fruit per sample were calculated. To estimate between-tree variability, 10 trees were randomly selected from each of three `Valencia' orange orchards from four geographic locations in Florida. Fifty-fruit composite samples were picked from around the tree canopy (0.9 to 1.8 m). Juice content, SSC, acid content, and ratio were determined. Using a nested design, the number of orchards and number of trees to sample were determined. There was greater variability in fruit quality among trees than within trees for a given canopy position; the optimal sample size when taking individual fruit samples from a given location and canopy position is four fruit from 20 trees. There was less variability in fruit quality when 50-fruit composite samples were used, resulting in an optimal sample size of five samples from three orchards within each location.

Free access

Paolo Sabbatini and James A. Flore

The naturally occurring carbon isotope composition (or 13C: 12C ratio, expressed with the notation d13C) of plant tissue may be used as an indicator of water use efficiency during plant growth. d13C has been shown to be an effective tool to study physiological response of plant to environmental conditions, especially water stress. The objective of this work was to test if d13C could be an indicator of carbon limitations or a low source: sink ratio. Trees of `Imperial Gala'/Bud 9 (n = 12), 6-years-old, field grown at the Clarksville Horticultural Research Station (Clarksville, Miss.), were assessed with different crop load (LCL = Low Crop Load, 0.76 ± 0.44 fruit per trunk sectional area (TCA); NCL = Normal Crop Load, 7.25 ± 1.83 fruit/TCA; HCL = High Crop Load, 15.83 ± 1.76 fruit/TCA) and leaf: fruit ratio (LCL: 52.78 ± 8.55, NCL: 13.33 ± 3.06, HCL; 4.31 ± 0.68) immediately following June drop. Net photosynthetic rate of leaves were monitored during the season and elevated rates were observed in NCL and HCL and correlated with the fruiting process. Photosynthesis was inhibited in LCL more in the afternoon (from 20% to 42% in relation to NCL) than in the morning (from 5% to 20%) and this was positively correlated with crop sink strength. Variations of the stable carbon isotope composition of roots (fine and coarse), fruit, leaves, and current-year stems were examined. The d13C varied by tissue (fruit > shoot and leaf > root) and in relation to the level of crop load (d13C‰ in fruit: LCL –23.513 ± 0.248, NCL –24.891 ± 0.594; and HCL –24.935 ± 0.375). These results may have implications for analysis of isotopic signals in carbohydrate stress and fractionation steps will be discussed.