Search Results

You are looking at 1 - 10 of 24 items for :

  • "irregular bearing" x
  • All content x
Clear All
Free access

Charles T. Rohla, Michael W. Smith, Niels O. Maness, and William Reid

The most significant horticultural problem facing pecan producers is alternate bearing. Four pecan [Carya illinoinensis (Wangenh.) C. Koch] cultivars were chosen, two with low to moderate and two with severe alternate-bearing tendencies, to compare selected characteristics related to irregular bearing. The cultivars were Colby and Peruque (low to medium alternate-bearing tendency) and Osage and Giles (high alternate-bearing tendency). Vegetative shoots and fruit-bearing shoots in the terminal and lateral position on 1-year-old branches were tagged in October, and flowering was determined the next spring. Shoot and root samples were collected while dormant and then analyzed for organically bound nitrogen (N), potassium (K), and nonstructural carbohydrate concentrations. As expected, ‘Colby’ and ‘Peruque’ had a lower alternate-bearing tendency than ‘Giles’ and ‘Osage’. Cultivars with a low alternate-bearing tendency had a larger return bloom on the bearing shoots in the terminal position than the other shoot types. Cultivars with a high alternate-bearing tendency had a lower return bloom on bearing terminal shoots than vegetative shoots. Bearing shoots in the lateral position usually had a lower return bloom than the other shoot types regardless of cultivar. Neither root nor shoot N, K, or nonstructural carbohydrate concentrations appeared to be closely related to the alternate-bearing characteristics of the four cultivars. The unique characteristic identified for low alternate-bearing cultivars was their ability to produce as many or more flowers and flowering shoots the next year on previously bearing terminal shoots compared with previously vegetative shoots. In high alternate-bearing cultivars, return bloom of bearing terminal shoots was suppressed relative to their vegetative shoots.

Free access

Michael W. Smith and Becky S. Cheary

practices have been developed that mitigate irregular bearing. These include management of the tree canopy for light interception ( Hinrichs, 1961 ; Lombardini, 2006 ), mineral nutrition ( Smith et al., 2012 ), groundcover vegetation ( Smith, 2011 ), water

Free access

Michael W. Smith, Charles T. Rohla, and Niels O. Maness

Alternate or irregular bearing is the most significant horticultural problem in pecan production. Alternate bearing is typically synchronized over regions by biotic or abiotic stresses and results in high-amplitude cycling ( Gemoets et al., 1976

Free access

Charles T. Rohla, Michael W. Smith, and Niels O. Maness

than nonstructural carbohydrates, organically bound N, and K contributed to their irregular bearing. These data suggest that a growth regulator(s) associated with developing fruit is a key component regulating pistillate flower induction and

Free access

Bruce W. Wood

Mitigation of alternate bearing (AB) through regulation of floral initiation of pistillate flowers is central to improving cropload management of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees and orchards. The present study examines the influence of key bioregulators {i.e., an auxin [as B-napththaleneacetic acid (NAA)], a cytokinin [6-benylamino purine (6-BA)], an ethylene generator (ethephon), and an auxin transport inhibitor [2,3,5-triiodobenzoic acid (TIBA)]} on subsequent season pistillate flowering. Gibberellic acid (i.e., GA3) and NAA inhibited, whereas prohexadione–calcium (P-Ca; calcium 3-oxido-5-oxo-4-propionylcyclohex-3-enecarboxylate), ethephon, and BA + TIBA promoted floral initiation when topically applied to canopies before the kernel filling stage of seed development. These bioregulators exhibit potential for integration into a bioregulator-based strategy to mitigate pecan AB by selective and timely use in “off” or “on” cycle years, depending on the bioregulator. Field studies provide evidence that a “cytokinin–gibberellin balance,” with partial modulation by auxin and ethylene, acts in the endogenous primordial environment of floral meristems as a “second-level signal” regulating a key step in a three-step process for initiation of pistillate flowers in pecan. This establishes a new model for explaining pistillate flower initiation in pecan and a basis for designing future research on the control and management of pistillate flowering and AB.

Free access

Bruce W. Wood

The cyclic, alternate bearing and correlative aspects of U.S. produced pecan [Carya illinoinensis (Wangenh.) K. Koch] nuts are characterized. An attempt to forecast production using stepwise autoregressive techniques identified a national level biennial cycle for cultivar (CV) and seedling (SC) class nuts and a novemennial (9 year) cycle for SG class nuts. The intensity of the biennial cycle at the national level has generally been low to moderate over the last 50 years for CV and SG class nuts with no clear time trend being expressed. During the most recent years (1979-1991), national production of CV class nuts has not exhibited pronounced bienniality, whereas that of SG class nuts exhibited a moderate bienniality. The nature of the the irregularity of cycling of U.S. and state production appears to nullify the use of univariate polynomial equations as a practical tool for accurately forecasting nut production. Nut production within individual states was also cyclic, with 2-, 3-, 5, 6-, 10-, 12-, 14-, 15-, and 16-year cycles, depending on state and nut class. The most intense contemporary biennial cycles for CV class nuts were from Oklahoma, South Carolina, and North Carolina, whereas cycling of SG class nuts was most intense in Texas and Oklahoma. Correlations of production within and among states indicated that most interrelationships are relatively weak; however, national production of CV class nuts are highly correlated (r = 0.96) with the production of CV class nuts in Georgia, whereas that of SG class nuts is most correlated with that of Louisiana.

Free access

Bruce W. Wood

Long-term productivity of commercial pecan [Carya illinoinensis (Wangenh.) K. Koch] enterprises in relatively low-light environments such as the southeastern United States are limited by excessive tree crowding as orchards age. An effective horticultural strategy for countering this problem in relatively high-light environments is mechanical hedge-type pruning; however, uncertainty persists regarding the best strategies in low-light environments. This report describes the results of a 4-year study regarding the response of ≈25-year-old ‘Desirable’ pecan trees to different mechanical hedgerow-type, moderate canopy width (i.e., 2.43-m cuts from tree axis) pruning strategies. Canopy treatments were nonpruned control (NPC), annual dormant season side-hedge pruning on two faces, annual summer season side-hedge pruning on two faces, and alternating annual dormant season side-hedge pruning on a single alternating face. Relative to the NPC treatment, all three pruning strategies: 1) reduced in-shell nut yields by roughly 19% to 38%; 2) reduced marketable nut-meat yield by ≈19% to 36%; 3) failed to stimulate shoot development or fruiting within the central interior zone of tree canopies; 4) increased kernel percentage of nuts; 5) increased nut-meat grade; 6) substantially reduced alternate bearing intensity (I = 0.51 to ≈0.20); and 7) reduced orchard crowding. Pruning-associated reductions in nut yield appear sufficient to limit the commercial usefulness of annual or biennial mechanical hedgerow-type pruning of ‘Desirable’ pecan orchards at moderate canopy widths in relatively low-light environments such as the southeastern United States.

Full access

Bruce W. Wood and Deane Stahmann

An ever increasing cost:price squeeze on the profitability of pecan (Carya illinoinensis) farming is driving a search for alternate husbandry approaches. `Wichita' and `Western' trees maintained at relatively high tree population density, by mechanized hedge pruning and topping, produced greater nut yield than an orchard treatment in which tree population density was reduced by tree thinning (144% for `Wichita' and 113% for `Western Schley'). Evaluation of three different hedge pruning strategies, over a 20-year period, identified a discrete canopy hedge pruning and topping strategy using a 2-year cycle, as being superior to that of a discrete canopy hedge pruning and topping strategy using an 8-year cycle, but not as good as a continuous canopy hedge pruning and topping strategy using a 1-year cycle. An evaluation of 21 commercial cultivars indicated that nut yields of essentially all cultivars can be relatively high if properly hedge pruned [annual in-shell nut yields of 2200 to 3626 lb/acre (2465.8 to 4064.1 kg·ha-1), depending on cultivar]. Comparative alternate bearing intensity and nut quality characteristics are reported for 21 cultivars. These evaluations indicate that pecan orchards can be highly productive, with substantially reduced alternate bearing, when managed via a hedge-row-like pruning strategy giving narrow canopies [3403 lb/acre (3814.2 kg·ha-1) for `Wichita' and 3472 lb/acre (3891.5 kg·ha-1) for `Western Schley']. North-south-oriented (N-S) hedgerows produced higher yields that did east-west (E-W) hedgerows (yield for N-S `Wichita' was 158% that of E-W trees and N-S `Western Schley' was 174% that of E-W trees).

These data indicate that mechanized hedge pruning and topping offers an attractive alternative to the conventional husbandry paradigm.

Free access

Bruce W. Wood

Excessive fruit drop (i.e., June drop) can limit orchard profitability of certain pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. The present study examines efficacy of aminoethoxyvinylglycine (AVG; formulated as ReTain®; Valent BioSciences, Libertyville, IL), a natural ethylene inhibitor, for increasing nutmeat yield in a commercial ‘Desirable’ pecan orchard over a 2-year period. The 30-ha experiment consisted of two treatments (nontreated versus ReTain) in the first year, an “off” year in the orchard's alternate bearing cycle. The second year's study, an “on” year, consisted of four treatments (i.e., “08 nontreated + 09 nontreated,” “08ReTain + 09 nontreated,” “08 nontreated + 09 ReTain,” and “08ReTain + 09 ReTain”). AVG, as ReTain [132 mg·L−1 a.i. (11.7 oz/acre)], was applied as two post-pollination canopy sprays (937 L·ha−1) 2 weeks apart in both years. During the “off” year, ReTain increased nut yield parameters with ReTain increasing kernel yield by 36% (704 kg·ha−1 versus 516 kg·ha−1) over that of nontreated trees. In the subsequent “on” crop year, the trees exhibiting a ReTain-associated previous year yield increase of ≈36% exhibited a reduction in yield of ≈25%, thus largely negating the previous season's yield increase over a 2-year alternate bearing cycle. Additionally, ReTain-treated trees during the “on” year failed to exhibit an increase in yield parameters over that of the nontreated control. As a result of a lag effect on subsequent year yield parameters, ReTain offers potential as a crop-load management tool for ‘Desirable’ orchards in “off” years such as a year of relatively high nutmeat price followed by a year of relatively low price. There appears to be no positive effect on yield when used in a heavy crop-load “on” year of an alternate bearing cycle. Thus, ReTain might have benefit for stabilizing alternate bearing in ‘Desirable’ pecan orchards. Kernel quality (defined as percentage of nut weight as kernel) of individual nuts from “on” year trees was not as sensitive to units of yield increase as for individual nuts of “off” year trees, thus implying that the rate of assimilate partitioning to individual reproductive structures in “off”-year trees is not as great as that in “on”-year trees.

Free access

Bruce W. Wood, Patrick J. Conner, and Ray E. Worley

Alternate bearing is a major economic problem for producers of pecan nuts [Carya illinoinensis (Wangenh.) K. Koch], yet a fundamental understanding of alternate bearing remains elusive. Nut yields (over a period of up to 78 years) from a commercial-like orchard of 66 cultivars was used to calculate alternate bearing intensity (I). Best-fit regression analysis indicates no association between I and fruit ripening date (FRD) or nut volume; although, there was moderate association with post-ripening foliation periods (PRFP) in that I tends to decrease as the length of the PRFP decreases. Multiple regression models indicated that FRD and nut volume were poor predictors of I: however, PRFP possessed significant inverse predictive power. Late-season canopy health, as measured by percentage of leaflet retention, decreased as FRD approached early-season ripening. Late-season photoassimilation rate was high er on foliage of trees with late FRDs than those with mid- or early-season ripening dates. These data provide new insight into the complex nature of alternate bearing in pecan and provide evidence for modifying the existing theories of alternate bearing of pecan.