Search Results

You are looking at 1 - 10 of 34 items for :

  • "integrated crop management" x
  • All content x
Clear All
Free access

Etaferahu Takele, John A. Menge, John E. Pehrson Jr., Jewell L. Meyer, Charles W. Coggins Jr., Mary Lu Arpaia, J. Daniel Hare, Darwin R. Atkin, and Carol Adams

The effect of various integrated crop management practices on productivity (fruit yield, grade, and sire) and returns of `Washington Navel' oranges [Citrus sinensis (L.) Osbeck] was determined in the San Joaquin Valley of California. Seventy-two combinations of treatments comprised of three irrigation levels [80%, 100%, and 120% evapotranspiration demand (ETc)], three N fertilizer levels (low, medium, and high based on 2.3%, 2.5%, and 2.7% leaf N, respectively), gibberellic acid (±), miticide (±), and fungicide-nematicide (±) were included in the analysis. Using a partial budgeting procedure, returns after costs were calculated for each treatment combiition. Costs of treatments, harvesting, packing, and processing were subtracted from the value of the crop. The value of the crop was calculated as the sum of returns of crop in each size and grade category. The overall result indicated that returns after costs were higher for the +fungicide-nematicide treatment and also were generally more with increased irrigation. The combination of 120% ETc, +fungicide-nematicide, medium or high N, -miticide, and -gibberellin showed the highest return of all treatment combinations. Second highest returns were obtained with high N or with miticide and gibberellin used together.

Full access

Robin G. Brumfield, Arbindra Rimal, and Steve Reiners

Production costs have been analyzed in several studies using such normative approaches as budgeting and mathematical programming, and positive approaches as estimation of production, cost, or profit functions. This study used budgeting methods to analyze the costs and benefits of adopting integrated crop management (ICM) or organic methods versus conventional agriculture for tomatoes (Lycopersicon esculentum Mill.), sweet corn (Zea mays L. var. saccharada), and pumpkins (Cucurbita pepo L.). Data were collected using field studies conducted at the Rutgers University Snyder Research and Extension Farm, Pittstown, N.J. Time and motion study techniques were used to record machinery use and labor quantities. Records of production inputs and yields were also collected. These records were then converted to a 1.0-acre (0.4-ha) basis to constructed crop budgets. Results show that ICM systems are more profitable than conventional and organic systems. Organic systems had the lowest net returns. However, because of the organic price premium, the net returns were fairly close to those for conventional and ICM systems.

Free access

E. Takele

I used a multidisciplinary, multiyear experiment to investigate the effect of interactive application of inputs on growth, productivity, and returns of three mature Washington navel oranges [Citrus sinensis (L.) Obseck] grown on rough lemon rootstock. Seventy-two combinations [made up of three levels of irrigation, two levels of fungicides/nematicides (+/-), two levels of miticides (+/-), two levels of growth regulators (+ /-), and three levels of N fertilizer] were investigated. The productivity measures indicated statistically significant interactive effects in some cases and only main effects with others. However, knowledge of significant treatment effects in one or the other productivity parameters would not have provided a complete picture to the end user without the economic analysis. Using a partial budgeting procedure, returns (after costs) were calculated for each treatment combination. Statistical analyses of variance also were performed to test for significant differences of productivity, crop value, and returns among the treatments and interactions. The results indicate that returns after costs were higher for the + fungicide-nematicide treatment and also were high with increased irrigation. However, the various treatments and their significant roles in productivity and returns are discussed. Also, the impact of water cost increases are analyzed.

Free access

Gerald Brown, Ricardo Bessin, John Hartman, Dwight Wolfe, and John Strang

Apple growers in Kentucky normally control pests on a preventative schedule involving fifteen or more chemical applications annually. IPM technology designed to provide growers information about the threat of diseases and insects was used in a demonstration plot in a Daviess County orchard and in the U.K. research orchard, Princeton. The IPM systems used in Daviess County resulted in 6 less applications of pesticides than the traditional system, a savings of approximately $130 per acre. When compared to the traditional preventative spray schedule, the IPM treated apples showed no differences in fruit quality and in orchard diseases and insect infestations. The decreased pesticide use has the potential to reduce applicator exposure, residues on fruit, and the environmental impact of these chemicals. The results of this demonstration were shared with and received an enthusiastic response from growers, Extension personnel, students, consumers, and the news media. The project demonstrated the feasibility of using apple IPM by a Kentucky grower, and it provided students an insight into applied biology.

Full access

Robin G. Brumfield and Margaret F. Brennan

Today's farmers need current and accurate farm management information. The Internet, and specifically the World Wide Web (web), is a powerful tool to efficiently and effectively deliver this information. Rutgers Cooperative Extension developed a web site to host agricultural production budgets for three cropping systems (conventional, integrated crop management and organic) for crops raised in the northeastern United States. Since budget information needs to be kept current if it is to be of real value to a farmer, we determined that the best way to keep the information up to date was to provide a separate, interactive HTML form that could be viewed and submitted from a users' standard web browser. The interactive web site enables farm management specialists to provide costs and returns information on current agricultural practices in a timely manner. This web site is accessible via the Rutgers Cooperative Extension Farm Management Home Page.

Free access

George P. Opit, Greg K. Fitch, David C. Margolies, James R. Nechols, and Kimberly A. Williams

The effects of overhead and drip tube irrigation on twospotted spider mite (TSMs) (Tetranychus urticae Koch) and predatory mite (PMs) (Phytoseiulus persimilis Athias-Henriot) populations, as well as the biological control of TSMs by PMs, were investigated on Impatiens wallerana Hook. f. `Impulse Orange'. To determine the effects of the two irrigation methods on TSM populations, plants were inoculated with female TSMs 6 weeks after seeding. Plants were then irrigated twice every three days, and TSM counts were taken 3 weeks later. To assess the effects of irrigation method on PMs, plants were inoculated with TSMs 6 weeks after seeding, PMs were released 10 days later, plants were irrigated about once per day, and the number of predatory mites on plants was counted 3 weeks after release. To assess the effects of irrigation method on the biological control of TSMs by PMs, plants were inoculated with TSMs and PMs were released as before, but then plants were irrigated either three times every 2 days or three times every 4 days using either drip or overhead irrigation. The number of TSMs on plants and the number of leaves showing TSM feeding injury were measured 3 weeks after predator release. Overhead watering significantly reduced TSM and PM populations as much as 68- and 1538-fold, respectively, compared to drip irrigation with microtubes. Perhaps more important, overhead watering with or without predators significantly reduced the number of leaves sustaining TSM feeding injury as much as 4-fold compared to drip irrigation. These results confirm the common observation that TSM infestations and injury may be reduced by irrigation systems that wet plant foliage. However, predators still reduced TSMs even though overhead irrigation had a suppressive effect on predatory mites. Predators are particularly useful for reducing TSM injury when plants are watered infrequently. Overhead watering could be used in tandem with biological control as a component of an integrated crop management program for TSMs in ornamental greenhouses by rapidly lowering TSM population levels in hot spots before PMs are released.

Full access

Emily E. Braun, Sarah Taylor Lovell, Mohammad Babadoost, Frank Forcella, Sharon Clay, Daniel Humburg, and Sam E. Wortman

Weeds are a top management concern among organic vegetable growers. Abrasive weeding is a nonchemical tactic using air-propelled abrasive grit to destroy weed seedlings within crop rows. Many grit types are effective, but if organic fertilizers are used, this could integrate weed and nutrient management in a single field pass. Our objective was to quantify the effects of abrasive grit and mulch type on weed suppression, disease severity, soil nitrogen availability, and yield of pepper (Capsicum annuum L. ‘Carmen’). A 2-year experiment was conducted in organic red sweet pepper at Urbana, IL, with four replicates of five abrasive grit treatments (walnut shell grits, soybean meal fertilizer, composted turkey litter fertilizer, a weedy control, and a weed-free control) and four mulch treatments (straw mulch, bioplastic film, polyethylene plastic film, and a bare soil control). Abrasive weeding, regardless of grit type, paired with bioplastic or polyethylene plastic mulch reduced in-row weed density (67 and 87%, respectively) and biomass (81 and 84%); however there was no significant benefit when paired with straw mulch or bare ground. Despite the addition of 6 to 34 kg N/ha/yr through the application of soybean meal and composted turkey litter grits, simulated plant N uptake was most influenced by mulch composition (e.g., plastic vs. straw) and weed abundance. Nitrogen immobilization in straw mulch plots reduced leaf greenness, plant height, and yield. Bacterial spot (Xanthomonas campestris pv. Vesicatoria) was confirmed on peppers in both years, but abrasive weeding did not increase severity of the disease. Pepper yield was always greatest in the weed-free control and lowest in straw mulch and bare soil, but the combination of abrasive weeding (regardless of grit type) and bioplastic or polyethylene plastic mulch increased marketable yield by 47% and 21%, respectively, compared with the weedy control. Overall, results demonstrate that when abrasive weeding is paired with bioplastic or polyethylene mulch, growers can concurrently suppress weeds and increase crop N uptake for greater yields.

Full access

Curtis H. Petzoldt, Stephen Reiners, and Michael P. Hoffmann

The document Cornell Integrated Crop and Pest Management Guidelines for Commercial Vegetable Production was revised in 1999 to become inclusive and integrative of all aspects of crop and pest management. As an adjunct to the printed publication, additional information was presented in tables at an Internet web site. Links on the web site were made to other sites with more detailed information on specific topics, such as photographs of pests and diagnostic information, soil fertility testing, cover crops, environmental impact of pesticides, pesticide labels, and images, sources, and life cycles of beneficial insects. The revision and web site have proven to be popular with cooperative extension staff and the vegetable industry in New York.

Free access

Guangyao Wang, Mathieu Ngouajio, Milton E. McGiffen Jr, and Chad M. Hutchinson

systems, which included conventional, integrated crop management (ICM), and organic. Materials and Methods Site description. Field experiments were conducted from 1999 to 2003 at the University of California Coachella Valley Agricultural

Full access

Robert J. Hoard and Michael J. Brewer

The Environmental Quality Incentives Program (EQIP) administered by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) was developed to encourage producer adoption of practices that promote resource conservation on lands in agricultural production. Reviewing the 2002 Farm Bill, EQIP rules, and local EQIP structure using Michigan as a case study, producers had ample opportunity to participate in EQIP. Yet past EQIP support of pest, nutrient, and conservation vegetation management was low among six states from 1997 to 2002, averaging 1.1% to 2.7% of total EQIP funds allocated. The past funding pattern and analysis of local resource concern priorities and incentive rates suggested that program modifications were warranted. The Michigan case study showed that participation in the NRCS advisory process, in partnership with commodity representatives and university specialists, was an effective avenue to recommend and obtain local EQIP modifications. After modifications were accepted in Michigan, increases were seen in producer participation in EQIP and in funds committed (about 15%) to adoption of a variety of techniques with pest, nutrient, and conservation vegetation value. This approach of analysis and engagement in the EQIP process is likely to work in other states, given common EQIP structure and governance, past funding patterns, and availability of supporting extension, research, and commodity partners.