Search Results

You are looking at 1 - 10 of 28 items for :

  • "granular matrix sensor" x
  • All content x
Clear All
Full access

Rafael Muñoz-Carpena, Yuncong C. Li, Waldemar Klassen, and Michael D. Dukes

A low-volume/high frequency (LVHF) soil moisture-based drip irrigation system was tested on a shallow sandy soil at a commercial tomato (Lycopersicon esculentum) farm in southern Florida. Six LVHF irrigation treatments were compared with the standard commercial practice on the farm (control), where a portable pump was used for manual drip irrigation twice each week. In the six LVHF treatments the system was continuously pressurized by means of an electrical pump and a pressure tank, and controlled by an irrigation timer set to irrigate a maximum of five times per day with the irrigation time (i.e., volume) set according to historical evapotranspiration (ET) demands in the area. Two treatments were based on timer schedules, one to supply 100% of the maximum recommended crop water needs in the area based on historical ET (ET-100%), and the other to supply 150% of those needs (ET-150%). The other four treatments were created by interfacing two types of soil moisture sensors (switching tensiometers and granular matrix sensors with control modules) set at two moisture points (wet = 10 kPa, optimal = 15 kPa) in a closed control loop with the irrigation timer programmed at the ET-100% schedule. Results showed that the six LVHF treatments reduced water use while not significantly affecting tomato yields. Switching tensiometers at the 15 kPa set point performed the best (up to 73% reduction in water use when compared to the control, 50% with respect to ET-100%). The results show that water use below historical ET levels can be obtained without sacrificing yield by keeping the root zone moisture at controlled levels with the soil-moisture based system. Routine maintenance was critical for reliable operation of the switching tensiometers. Granular matrix sensor based irrigation behaved erratically, and did not improve water savings compared to ET-100%, indicating that this system was not effective under the conditions of the area due to the sensor's slow response to frequent wetting-rewetting cycles and characteristics of the interface.

Free access

Clinton C. Shock and Feng-Xin Wang

expanses or uniform in nursery container mixes. Measurements of SWT can be determined with tensiometers, gypsum blocks, heat dissipation sensors, granular matrix sensors, psychrometers, and other devices. Measurements of SWT are particularly useful for

Free access

C.C. Shock, E.B.G. Feibert, and L.D. Saunders

Four potato (Solanum tuberosum L.) varieties were grown under four season-long sprinkler irrigation treatments in three successive years (1992-94) on silt loam soil in eastern Oregon. The check treatment was irrigated when soil water potential (SWP) at the 0.2-m depth reached -60 J·kg-1 and received at most the accumulated evapotranspiration (Etc) to avoid exceeding the water-holding capacity of the top 0.3 m of soil. The three deficit irrigation treatments were irrigated when SWP at the 0.2-m depth reached -80 J·kg-1 and had the following percent of the accumulated Etc applied at each irrigation: 1) 100%, 2) 70%, and 3) 70% during tuber bulking with 50% thereafter. Based on regression of applied water over 3 years, potatoes lost both total and U.S. No. 1 yields when irrigations were reduced. Based on regression on applied water, when irrigation was reduced gross revenues declined more than production costs, resulting in a reduction in profits. Leaching potential, as determined by the SWP treatments, was low for all treatments. The results of the study suggest that deficit irrigation of potatoes in the Treasure Valley of Oregon would not be a viable management tool, because the small financial benefits would not offset the high risks of reduced yields and profits from the reduced water applications.

Free access

Erik B. G. Feibert, Clint C. Shock, and Monty Saunders

Onions were grown with different soil water potentials as irrigation criteria to determine the soil water potential at which optimum onion yield and quality occurs. Furrow irrigation treatments in 1992 and 1993 consisted of six soil water potential thresholds (-12.5 to -100 kPa). Soil water potential in the first foot of soil was measured by granular matrix sensors (Watermark Model 200SS, Irrometer Co., Riverside, CA) that had been previously calibrated to tensiometers on the same silt loam series. Both years, yield and market grade based on bulb size (more jumbo and colossal onions) increased with wetter treatments. In 1993, a relatively cool year, onion grade peaked at -37.5 kPa due to a significant increase in rot during storage following the wetter treatments. These results suggest the importance of using moisture criteria to schedule irrigations for onions.

Free access

Clinton C. Shock, Erik B.G. Feibert, and Lamont D. Saunders

Six soil water potential irrigation criteria (–12.5 to –100 kPa) were examined to determine levels for maximum onion yield and quality. Soil water potential at 0.2-m depth was measured by tensiometers and granular matrix sensors (Watermark Model 20055, Irrometer Co., Riverside, Calif.). Onions are highly sensitive to small soil water deficits. The crop needs frequent irrigations to maintain small negative soil water potentials for maximum yields. In each of 3 years, yield and bulb size increased with wetter treatments. In 1994, a relatively warm year, onion yield and bulb size were maximized at –12.5 kPa. In 1993, a relatively cool year, onion marketable yield peaked at –37.5 kPa due to a significant increase in rot during storage following the wetter treatments.

Full access

Jeffery C. Kallestad, Theodore W. Sammis, John G. Mexal, and John White

Optimal pecan (Carya illinoiensis) production in the southwestern United States requires 1.9 to 2.5 m of irrigation per year depending on soil type. For many growers, scheduling flood irrigation is an inexact science. However, with more growers using computers in their businesses, and with soil moisture sensors and computerized data-collection devices becoming more inexpensive and accessible, there is potential to improve irrigation and water use efficiencies. In this project two low-cost soil monitoring instruments were introduced to a group of pecan producers. They were also given instruction on the use of Internet-based irrigation scheduling resources, and assistance in utilizing all of these tools to improve their irrigation scheduling and possibly yield. The objectives were to determine whether the technology would be adopted by the growers and to assess the performance of the sensors at the end of the season. Three out of the five growers in the project indicated they used either the granular matrix (GM) sensors or tensiometer to schedule irrigations, but compared to the climate-based irrigation scheduling model, all growers tended to irrigate later than the model's recommendation. Graphical analysis of time-series soil moisture content measured with the GM sensors showed a decrease in the rate of soil moisture extraction coincident with the model's recommended irrigation dates. These inflection points indicated the depletion of readily available soil moisture in the root zone. The findings support the accuracy of the climate-based model, and suggest that the model may be used to calibrate the sensors. Four of the five growers expressed interest in continued use of the tensiometer, but only one expressed a desire to use the GM sensor in the future. None of the participants expressed interest in using the climate-based irrigation scheduling model.

Free access

Clinton C. Shock, Erik B.G. Feibert, and Lamont D. Saunders

Long-day onion (Allium cepa L. `Vision') was subjected to five soil water potential (SWP) treatments (–10, –20, –30, –50, and –70 kPa) using subsurface drip irrigation in 1997 and 1998. Onions were grown on 1.1-m beds with two double rows spaced 0.56 m apart and a drip tape buried 13 cm deep in the bed center. Soil water potential was maintained at the five levels by automated, high-frequency irrigations based on SWP measurements at 0.2-m depth. Onions were evaluated for yield and grade after 70 days of storage. In 1997, total and colossal (bulb diameter ≥102 mm) yield increased with increasing SWP, but marketable yield was highest at a calculated –21 kPa because of greater decomposition in storage in wetter treatments. In 1998 total, marketable, and colossal-grade onion yield increased with increasing SWP. Onion profits were highest with a calculated SWP of –17 kPa in 1997, and at the wettest level tested in 1998. Storage decomposition was not affected by SWP in 1998. Maintenance of SWP at –10 and –20 kPa required, respectively, 912 and 691 mm of water in 1997 and 935 and 589 mm of water in 1998. Onion crop evapotranspiration from emergence to the last irrigation totaled 681 mm in 1997 and 716 mm in 1998.

Free access

A.Q. Villordon, J.W. Franklin, and W. McLemore

This report summarizes the results of irrigation studies conducted from 2000 to 2005 at the Sweet Potato Research Station, Chase, La. These studies investigated the role of various scheduling methods, soil moisture measurement devices, and irrigation delivery methods in sweetpotato production. The studies indicate that 15 to 20 inches of total rainfall and supplemental irrigation is required to produce 400 to 525 bu/acre of US#1 storage roots in Beauregard. Supplemental irrigation can be scheduled based on this benchmark, potentially reducing over-irrigation during dry periods. We have also found that during dry periods, irrigating every furrow can bring about 50% difference in US#1 yield vs. supplying irrigation to alternate furrows. During growing seasons characterized by optimum rainfall patterns, we did not detect any response in US#1 yield to various irrigation treatments. We evaluated several moisture measurement devices including granular matrix sensors, evaporation pan, time domain reflectometry (TDR)-based instrument, and tensiometers. We found the TDR-based device easy to use and convenient in terms of its portability. Based on studies conducted in 2001 and 2002, this device demonstrated potential as a management tool in sweetpotato production. For instance, a management allowable deficit (MAD) of 25% available moisture as measured using the TDR-based device can potentially result in the same yield as weekly irrigation and a MAD of 50% available moisture. When used properly, irrigation scheduling can reduce over-irrigation and contribute to overall efficiency in the use of production inputs.

Free access

Erik B.G. Feibert, Clinton C. Shock, and Lamont D. Saunders

Onion yield and grade were compared under sprinkler, subsurface drip, and furrow irrigation in 1992, 1993, and 1994. Furrow-irrigated onions were planted on two double rows on 1.12-m-wide beds at 352,000 seeds/ha. Sprinkler- and drip-irrigated onions were planted in nine single rows on a 2.24-m-wide bed at 432,100 seeds/acre. Drip plots had three drip lines buried 0.10 m deep in each 2.24-m bed. Soil water potential at 0.2-m depth was measured by tensiometers and granular matrix sensors (Watermark Model 200SS, Irrometer Co., Riverside, Calif.). Furrow irrigations were started when the soil water potential at the 0.2-m depth reached –25 kPa. Drip-irrigated onions had soil water potential at the 0.2-m depth kept wetter than –25 kPa by daily replacement of crop evapotranspiration (Etc). Sprinkler irrigations were started when the accumulated Etc reached 25 mm. Sprinkler irrigation resulted in significantly higher onion yield than furrow irrigation in 1993 and 1994. Sprinkler irrigation resulted in higher marketable onion yield than furrow irrigation in 1993. Drip irrigation resulted in significantly higher onion yield than furrow irrigation every year. Drip irrigation resulted in higher marketable onion yield than furrow irrigation in 1992 and 1994. Marketable onion yield was reduced in 1993 due to rot during storage.

Full access

-collection devices becoming less expensive and more accessible, there is potential to improve irrigation timing and water use efficiencies for growers using computers in their businesses. Kallestad et al. (p. 667 ) evaluated the performance of granular matrix