Search Results

You are looking at 1 - 4 of 4 items for :

  • "gene and protein expression" x
  • Refine by Access: All x
Clear All
Free access

Qi Chen, Gojko Jelenkovic, Chee-Kok Chin, Sharon Billings, Jodi Eherhardt, Joseph C. Goffreda, and Peter Day

Three constructs of a coleopteran toxic cryIIIB Bacillus thuringiensis gene were engineered and incorporated into eggplant (Solanum melongena L.). Southern blot analysis of the eight primary transformants and segregational analysis of their R, progenies indicated that the chimeric cryIIIB constructs in each of the transgenic plants were stably incorporated at a single locus or at multiple sites within the same linkage group and that they were regularly transmissible to the progeny. The results of Northern blot and RNase protection analyses demonstrated that transcription of the cryIIIB mRNA takes place in plant cells, but only a small amount of the expected entire length transcripts were produced. The amount of the 5' end mRNA fragment produced was at least 30 to 40 times more abundant than the amount of the 3' end mRNA fragment. This could be interpreted to mean that either the two ends of the mRNA are of different stability or that the transcription process is often interrupted and only a few mRNAs complete the entire process to the end. When the transgenic plant mRNA was reverse-transcribed, amplified by polymerase chain reaction, and hybridized to the cryIIIB probe, two smaller molecular weight mRNA species were identified. Thus, the preponderance of the cryIIIB mRNA in transgenic plants exists as a truncated species, a situation similar to that of cryI genes when expressed in transgenic plants. Seedlings from the eight independent transgenic plants were tested for Coleopteran insect resistance. However, they did not demonstrate any significant resistance to the first and second instar larvae of the Colorado potato beetle (Leptinotarsa decemlineata Say).

Free access

Sarunya Yimyong, Tatsiana U. Datsenka, Avtar K. Handa, and Kanogwan Seraypheap

Effects of hot water treatment (HWT) on metabolism of mango (Mangifera indica cv. Okrong) fruit during low-temperature storage (LTS) and subsequent room temperature fruit ripening (RTFR) were examined. Mature-green ‘Okrong’ mango fruit were treated by immersing in hot (50 ± 1 °C) or ambient (30 ± 1 °C) water for 10 min, stored either at 8 or 12 °C for 15 days, followed by transfer to room temperature (30 ± 2 °C) for 5 days. Rate of ethylene production was significantly reduced by HWT during LTS and RTFR in all treatments. HWT increased catalase activity, suppressed ascorbate peroxidase activity, and had no effect on glutathione reductase activity during the ripening phase but showed a slight stimulatory effect during LTS. HWT altered RNA transcripts of manganese–superoxide dismutase, pectate lyase, β-galactosidase, and β-1,3-glucanase, which exhibited increases during LTS. RTFR of LTS fruit caused reduction in transcript levels of these genes, except pectate lyase. Total protein patterns were altered by all treatments during LTS and RTFR, but HWT arrested loss of several proteins during RTFR. Taken together, results provide strong evidence that HWT increases the storage period of mango by extending fruit shelf life through the regulation of a myriad of metabolic parameters, including patterns of antioxidant and cell wall hydrolase genes and protein expression during storage at low and ambient temperatures.

Free access

Tao Hu, Haiying Yi, Longxing Hu, and Jinmin Fu

was added into each plant-flask system every 2 d during the experimental period for making up the loss of water resulting from evaporation. Photosynthetic gas exchange was determined and the leaf samples for physiological, gene, and protein expression

Free access

Jinyu Wang, Bo Yuan, Yi Xu, and Bingru Huang

such as changes in gene and protein expression and in metabolism ( Fujita et al., 2006 ). Calcium-transporting ATPase is an ATP-dependent calcium pump that transport calcium against its concentration ( White and Broadley, 2003 ). Transient increase of