Search Results

You are looking at 1 - 10 of 22 items for :

  • "fungistatic" x
  • All content x
Clear All
Free access

Philip E. Hammer, S.F. Yang, M.S. Reid, and J.J. Marois

The effectiveness of fungistatic atmospheres for postharvest control of Botrytis cinerea Pers. infections on cut rose flowers (Rosa hybrids L.) was investigated. Storing cut `Sonia', `Royalty', and `Gold Rush' roses at 2.5C with 10% CO2 for 5 days, followed by 2 days of cold storage in air, reduced the number of B. cinerea lesions that developed on inoculated and noninoculated flower petals by 77% and 82%, respectively, compared to cold storage for 7 days in air. Higher CO2 concentrations and longer CO2 treatment times reduced disease severity further, but resulted in unacceptable leaf discoloration on some cultivars. No deleterious effects of CO2-enriched storage atmospheres on flower quality, weight gain, or vase life were observed. Storage at 2.5C for 7 days in 2 μl SO2/liter reduced B. cinerea infections on inoculated and noninoculated flowers by 53% and 43%, respectively. No deleterious effects on flower quality, weight gain, or vase life were observed. Higher SO2 levels reduced disease severity further, but caused bleaching of the petal margins and necrosis around leaf wounds.

Free access

H. Ahmadi, W.V. Biasi, and E.J. Mitcham

Effects of short-term exposure to a 15% CO2 atmosphere on nectarines [Prunus persica (L.) Batsch (Nectarine Group) `Summer Red'] inoculated with Monilinia fructicola (Wint.) Honey (causal agent of brown rot) were investigated. Nectarines were inoculated with spores of M. fructicola and incubated at 20 °C for 24, 48 or 72 hours and then transferred to storage in either air or air enriched with 15% CO2 at 5 °C. Fruit were removed from storage after 5 and 16 days and were examined for brown rot decay immediately and after ripening in air for 3 days at 20 °C. Noninoculated nectarines were stored and treated likewise for evaluation of postharvest fruit attributes to determine their tolerance to 15% CO2. Incubation period after inoculation, storage duration, and storage atmosphere had highly significant effects on fruit decay. `Summer Red' nectarines tolerated a 15% CO2 atmosphere for 16 days at 5 °C. Development of brown rot decay in fruit inoculated 24 hours before 5 or 16 days storage in 15% CO2 at 5 °C was arrested. After 3 days ripening in air at 20 °C, the progression of brown rot disease was rapid in all inoculated nectarines, demonstrating the fungistatic effect of 15% CO2. The quantity of fungal cell wall materials (estimated by glucosamine concentration) was compared to visual estimation of decayed area and visual rating of fungal sporulation. The glucosamine assay defined the onset and progress of brown rot infection more precisely than either of the two visual tests.

Free access

Steven E. Newman, Michael J. Roll, and Ronald J. Harkrader

Quaternary benzophenanthridine alkaloids (QBAs) isolated from plants in the family Papaveraceae are effective for the control of some fungal diseases. Extracts from Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. For comparison, copper sulfate pentahydrate, piperalin, and fenarimol also were applied to mildew-infected plants within the same greenhouse at their respective labeled rates. One day after treatment, visible symptoms of mildew infection were reduced 60% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the symptoms of infection 50%, 75%, and 85%, respectively. Subsequent studies demonstrated that a tank mix of QBA and piperalin provided enhanced control of powdery mildew on rose. Results from this study indicate that QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.

Free access

Steven E. Newman, Michael J. Roll, and Ronald J. Harkrader

Quaternary benzophenanthridine alkaloids (QBAs) isolated from plants in the family Papaveraceae are effective for the control of some fungal diseases. Extracts from Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses (Rosa sp.) infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. For comparison, copper sulfate pentahydrate, piperalin, and fenarimol also were applied to mildewinfected plants within the same greenhouse at their respective labeled rates. One day after treatment, visible symptoms of mildew infection were reduced 60% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the symptoms of infection 50%, 75%, and 85%, respectively. Subsequent studies demonstrated that a tank mix of QBA and piperalin provided enhanced control of powdery mildew on rose. Results from this study indicate that QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.

Free access

Chiam L. Liew and Robert K. Prange

Effects of ozone and storage temperature on carrots and two postharvest pathogens—Botrytis cinerea Pers. and Sclerotinia sclerotiorum de Bary—were investigated. Pathogen-inoculated and uninoculated whole carrots were exposed to an ozone concentration of 0 (control), 7.5, 15, 30, or 60 μl·liter-1. Treatment chambers were flushed with a total flow rate of 0.5 liters·min-1 (air and ozone) for 8 h daily for 28 days. The experiment was repeated twice at storage temperatures of 2, 8, and 16C. The residual ozone concentration (ozone supplied-exhausted and reacted ozone) increased with ozone supply concentration but was less at higher storage temperatures. A 50% reduction of daily growth rates of both fungi at the highest ozone concentration indicated that ozone was fungistatic. Carrot respiration rate, electrolyte leakage, and total color differences increased with ozone concentration. Ozone-treated carrots were lighter (higher L* values) and less intense (lower chroma values) in color than control carrots.

Free access

Eva Almenar, Rafael Auras, Maria Rubino, and Bruce Harte

The United States is the world's largest producer of blueberries and strawberries. Successful marketing for both of them requires fruit of the highest quality and appearance. However, these fruits have a relatively short postharvest life, mostly due to the incidence of molds such as Colletrotrichum acutatum, Alternaria alternata, and Botrytis cinerea. At present, several natural occurring plant volatiles have been shown to be effective against fungal growth, but, even so, those compounds could not be maintained at constant concentration during the whole postharvest period due to their volatility. In this work, two naturally occurring aldehydes (acetaldehyde and hexanal) were tested and compared against the growth of the above mentioned fungi at 23 °C. After that, the most effective antifungal compound for each fungus was encapsulated in ß-cyclodextrins (ß-CD) and tested during storage period. Both aldehydes were effective in reducing and avoiding fungal proliferation depending on concentration. Fungal proliferation depended on daily, and not initial, volatile concentrations. Volatiles encapsulated in ß-CD showed higher antifungal activity compared to that obtained using the pure volatile during storage. Tested volatiles showed both fungicidal and fungistatic capacities after storage of fungal cultures in air. Results suggested ß-CD-acetaldehyde and ß-CD-hexanal complexes can be used as a new technology to release a naturally occurring antifungal compound during storage against several fungal diseases.

Free access

Michael J. Roll, Steven E. Newman, and Ronald J. Harkrader

A formulation of quaternary benzophenathridine alkaloids (QBA) was combined with piperalin as a tank mix. The QBA was applied at 150 mg/L and piperalin, at the labeled rate, was applied as a spray application to greenhouse roses infected with Sphaerotheca pannosa var. rosae (powdery mildew). Copper sulfate pentahydrate and fenarimol were also applied to mildew-infected plants within the same greenhouse at their respective label rates for comparison. Initial infection for the QBA/piperalin combination spray was 45% of the leaflet surface area, 3 days after application the infection was reduced to 10%, 6 days after application infection was reduced to 5%, and 14 days after application the infection remained at 5%. Initial infection for a QBA application without piperalin was 25% of the leaflet surface area. Three days after application, the infection was reduced to 15%; 6 days after application the infection remained at 15%; and 14 days after application, the infection was reduced to 10%. The data reveals that the QBA/piperalin combination gives a short-term as well as a long-term fungicidal and fungistatic activity.

Free access

Steven E. Newman, Michael J. Roll, and Ronald J. Harkrader

There are many naturally occurring substances that have the potential to be adapted to modern pest control chemistry. Azadirachtin, an insect growth regulator, is one such naturally occurring compound that has been widely accepted in insect pest management. Quartenary benzophenanthridine alkaloids (QBAs) are known to be effective in the control of crop damaging fungal diseases. QBAs can be isolated from plants in the Papaveraceae. Extracts of Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. Copper sulfate pentahydrate (Phyton27), piperalin (Pipron), and fenarimol (Rubigan) were also applied to mildew infected plants within the same greenhouse at their respective label rates for comparison. One day after treatment, the mildew infection was reduced 50% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the infection 50%, 75%, and 80%, respectively. Nine days after application, the mildew infection of QBA treated plants was less than 5% of the leaflet surface area. QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.

Free access

Altaf Qadir and Fumio Hashinaga

Nitrous oxide (N2O) was tested as a potential fungicidal or fungistatic compound. Twelve postharvest fungi were exposed to 10 to 80 kPa with 20 kPa O2 in a static system at 20 °C. These fungi were divided into N2O high-, medium- and low-sensitive groups. Based on growth sensitivity, growth of high-sensitive fungi was completely inhibited, and that of medium-sensitive fungi up to 85%. With low-sensitive fungi, significant inhibition was achieved only when the fungi were exposed to N2O continuously for 6 days. Botrytis cinerea Pers.: Fr., Colletotrichum acutatum Simmonds, Monilinia fructicola (Winter) Honey, Penicillium expansum Link, Penicillium italicum Wehmer, Phytophthora citrophthora (R.E. Smith and E.H. Smith) Leonian and Rhizopus stolonifer (Ehrens.: Fr.) Vuillemin, were high-sensitive; Glomerella cingulata (Stoneman) Spaulding was medium-sensitive, and Alternaria alternata (Fr.) Keissler, Fusarium oxysporum Schlechtend1: Fr. f. sp. fragariae Winks and Williams, Fusarium oxysporum Schlechtend1: Fr. f. sp. lycopersici (Saccardo) Snyder and Hansen., and Geotrichum candidum Link., were low-sensitive fungi. Addition of up to 100 μL·L-l C2H4 did not reduce inhibition caused by N2O. The inhibitory effect of N2O was considered to be due to biophysical properties similar to CO2, the competitive inhibition on C2H4 action, or the biosynthesis of methionine. These results indicate the potential of N2O to control some postharvest decay fungi.

Open access

Yuji Nakata and Hidemi Izumi

.2 log cfu/g on the initial day ( Fig. 1 ). The counts increased to 4.9 log cfu/g after 10 d of storage in air, whereas the high CO 2 (20%, 30%, and 40%) CA inhibited the fungal count increase throughout 10 d of storage. The fungistatic effect was