Search Results

You are looking at 1 - 10 of 487 items for :

  • "fruit color" x
Clear All
Full access

Stuart G. Reeves, Jacqueline F. Nock, Pamela M. Ludford, Lydia L. Hillman, Linda Wickham and Richard A. Durst

The use of a new, inexpensive scanning reflectometer, the Colortron, as a field and laboratory colorimeter is investigated. The results obtained from a series of color swatches and from a variety of fruit samples are compared with those obtained from other commercially available, but more expensive, colorimeters (Hunter and Minolta). The Colortron is shown to be very good for gathering and analyzing data. The results of all three instruments were extremely close when measuring color swatches, but the Colortron gave aberrant results with certain fruit having translucent skin and flesh. Despite this caveat, it still has considerable potential for the measurement of fruit color in the field and laboratory.

Full access

Ignasi Iglesias and Simó Alegre

Oficial de la Unión Europea, 2005 ). Even with adequate size, poor fruit color is an important factor that can result in downgrading fruit and is generally associated with poor visual appearance and low consumer acceptance. Although red color does not

Restricted access

Matthew R. Mattia and John W. Scott

be the least prone to YS. It is also important to know if there is a general trend for higher SSC to be associated with green shoulder vs. u and/or other fruit color genotypes as this would suggest a breeding shift back to u + to attain better

Free access

T. K. Hartz, P. R. Johnstone and E. M. Miyao

The effect of K fertigation through buried drip irrigation on processing tomato (Lycopersicon esculentum Mill.) was evaluated in two California field trials in 2004, and soil K dynamics was investigated in greenhouse trials. Fertigation trials were conducted in fields with exchangeable soil K of 190 (site 1) and 270 mg·kg-1 (site 2), above the yield response threshold by traditional preplant or sidedress K application established by prior research. Two fertigation strategies were compared to an unfertilized control: continuous fertigation at 100 mg·L-1 K from early fruit set through early fruit color development, and weekly application of 40 kg·ha-1 K over the same period. In both treatments, a total of 200 kg·ha-1 K (from KCl) was applied. K fertigation significantly increased fruit yield at site 2, and improved fruit color at both sites. In the greenhouse experiments, fescue (Festuca arundinacea) was grown for 2 weeks atop columns of eight soils ranging from 120–380 mg·kg-1 exchangeable K; the columns were wetted from the bottom, by capillarity. The fescue roots were separated from the soil by a nylon fabric that prevented root penetration while allowing the penetration of root hairs, creating a two-dimensional root/soil interface. In all soils, fescue K uptake reduced soil exchangeable K only in the top 2 mm of the columns, suggesting that effective K diffusion was very limited. In columns of 200-mm height, applying 100 mg·kg-1 K in the water used to wet the soil had minimal impact on fescue K uptake. In columns of 15-mm height, this method of K application more than doubled fescue K uptake in all soils, suggesting that the effective limit of K movement was between 15-200 mm.

Free access

Yu Gao and G. A. Cahoon

Significant differences in fruit color were created with fruit cluster thinning (20, 40, and 60 clusters/vine), cluster shading (full sun as control, 55% shading, and 95% shading using shading cage constructed of shade cloth), and defoliation (3, 6, 9, 12, and 15 leaves/cluster). Fruit cluster shading and defoliation treatments decreased red fruit color (characterized by Hunte Color a). Fruit cluster thinning increased red fruit color. Anthocyanin profile of Reliance grape was characterized as cyaninidin-3-glucoside and delphinidin-3-glucoside using Paper Chromatography and Thin Layer Chromatography. Analyses of total anthocyanin content (pH shift method), individual anthocyanin and soluble carbohydrates content (High Performance Liquid Chromatography), are being conducted to determine effects of carbohydrate allocation to fruit and sun light on fruit color of Reliance grapes.

Free access

Haejeen Bang, Sunggil Kim, Daniel I. Leskovar and Stephen King

Fruit color and carotenoid composition are important traits in watermelon. Watermelon fruit color inheritance has revealed that several genes are involved in color determination. Carotenoids are known to have various functions in plants and animals, such as providing antioxidant activity and other health benefits for humans, and UV protection and pigmentation for plants. Differential gene activity in the carotenoid biosynthetic pathway may result in different color determination of mature fruit. Eight genes encoding enzymes involved in the pathway were isolated and their structures were characterized. While obtaining full-length cDNA of these enzymes, two single-nucleotide polymorphisms were detected in a coding region of lycopene β-cyclase (LCYB). These SNP markers showed cosegregation with red and canary yellow fruit color based on the genotyping of two segregating populations. This will lead to development of a codominant molecular marker for the selection of LCYB allele, which may allow breeders to distinguish between red and canary yellow watermelon fruit colors at the seedling stage.

Free access

Gregory C. Peterson and Leonard M. Pike

Fruit of TAMU breeding line 830397 are green in contrast to the cream or orange fruit of commercial cultivars at the mature-seed stage (MS-S). Inheritance of this trait for green MS-S fruit color in Cucumis sativus was investigated. A new locus, gn, is proposed as well as the elimination of the C locus. MS-S fruit color is controlled by two major genes, R and Gn. Fruit is orange when the genotype is R_ _ and green when the genotype is rrgngn. The cream MS-S fruit color trait is incompletely dominant over green, as the genotype rrGnGn is cream while rrGngn produces mature fruit from cream to intermediate in color between cream-colored and green fruit. Spine color is pleiotropic with or very tightly linked to the R locus, but heavy netting from PI 165509 appears not to be linked with the orange genotype and is polygenic.

Free access

Frank Cheng, Norman Weeden and Susan Brown

The ability to pre-screen apple populations for fruit color at an early seedling stage would be advantageous. In progeny of the cross `Rome Beauty' × `White Angel' red/yellow color variation was found to be highly correlated with the genotype at Idh-2, an isozyme locus that was heterozygous in both parents. We postulate that the red/yellow color variation was produced by a single gene linked to I&-2 and also heterozygous in both parents. This population was also screened with over 400 primers to detect randomly amplified polymorphic (RAPD) markers for fruit color. DNA extraction procedures were developed for bark, and DNA was extracted from bark samples and leaves. Red and yellow fruited individuals were examined in bulk. Several markers have been found that are linked to red color. A high density map is being constructed in this region. These markers are being examined in other crosses segregating for fruit color. The application of these markers will be discussed in relation to the inheritance and manipulation of fruit color.

Free access

I. Iglesias, J. Graell, G. Echeverría and M. Vendrell

The influence of supplemental sprinkler irrigation on fruit color of `Oregon Spur Delicious' (Trumdor) apples (Malu×domestica Borkh.) was evaluated in the area of Lleida (NE Spain) over a 3-year period. Cooling irrigation was applied for 2 hours daily for 25-30 days preceding the harvest. Three treatments were evaluated: 1) control without overtree sprinkler irrigation; 2) sprinkler irrigation applied at midday; and 3) sprinkler irrigation applied at sunset. Fruit color was significantly affected by the cooling irrigation and also by the weather of the particular year. Increased red color and higher anthocyanin content resulted from sprinkler irrigation, especially when applied at sunset. At harvest, anthocyanin content was correlated with a*/b* and hue angle, suggesting that the colorimeter measurements could provide a nondestructive estimate of anthocyanin content.

Free access

Sharad C. Phatak, Jinsheng Liu, Casimir A. Jaworski and A. Fazal Sultanbawa

The functional male sterile (fms) eggplant (Solanum melohgena L.) germplasm UGA 1-MS was crossed with two cultivars, `UGA 18 White' and `Florida Market' with normal anthers to derive F1, F2, and BC populations. Functional male sterility (fms) was governed by a single recessive allele. The gene symbol fms is proposed for this male sterile characteristic. The functional male sterility gene was linked to purple fruit color at the X/x locus. Our observations also revealed that the purple or violet color ware not only on the fruit peel, but also on the anthers and leaf buds if the eggplant fruit was purple or violet. In the transmission of parents and progenies of the cross of UGA 1-MS × `UGA 18 White', the purple line on the anther and leaf bud purple color ware tightly associated with fruit purple color. Thus, it is assumed that the allele X controls not only purple fruit, but also the expression of the purple line on the anther and purple leaf bud.