Search Results

You are looking at 1 - 10 of 94 items for :

  • "fresh mass" x
  • Refine by Access: All x
Clear All
Free access

H.N. De Silva, D.S. Tustin, W.M. Cashmore, C.J. Stanley, G. Lupton, and S.J. McArtney

A number of mass—diameter equations were compared for their potential use in indirect measurement of fruit masses of `Royal Gala' apple (Malus ×domestica). The fruit fresh-mass—diameter relationship changed with time during the season, hence no single function fitted the data well. Smooth piecewise functions that assume different relationships for intervening segments of a curve bounded by knots on the x-axis are particularly useful for modeling such data. The curve is said to be smooth because the first derivative of the function is continuous on the interval, including the knots. Two such equations, a three-parameter piecewise power function and a five-parameter spline exponential function, provided good fits to data. For both equations, the estimated mean bias on individual fruit predictions was within 5% of predicted mass over the two validating data sets. As for the precision conditional on no bias, a sample size of 20 fruit gave standard errors within 2.5% of mean predicted mass. These precisions are adequate to meet the industry requirements for monitoring fruit mass through the growing season. There was evidence of a seasonal difference in the estimated bias, but we were unable to confirm that this variation resulted from seasonal differences in fruit shape. Application of these two equations to data from other regions suggested that divergence from the estimated functional form may in fact be greater under increasingly different climatic conditions. Hence, further investigations to identify possible sources of these differences are necessary before the proposed equations can be applied across climatically different regions.

Free access

Navjot Kaur and Jiwan P. Palta

We investigated the use of lysophosphatidylethanolamine (LPE) for prolonging vase life of snapdragon (Antirrhinum majus L.). Freshly cut snapdragon spikes were set into a LPE solution at 25 mg·L-1 for 24 h and then transferred to deionized water. The vase life was enhanced by LPE. The flowers on spikes treated with LPE showed symptoms of wilting or browning 4 or 6 days later than those on the spikes given deionized water in inbred or `Potomac White', respectively. All the spikes were of marketable quality for 5 to 7 days after harvest when treated with LPE, whereas in the control only about half of the flowers were of marketable quality at 2 days after harvest. LPE treatment also delayed fresh mass loss, lowered endogenous ethylene production, and reduced ion leakage. These results suggest that LPE has commercial potential in enhancing vase life of snapdragons.

Free access

Julie M. Tarara, Paul E. Blom, Bahman Shafii, William J. Price, and Mercy A. Olmstead

of plant fresh mass recorded through destructive sampling. However, the inherent sensitivity of the TTM to changes in the total mass being supported by the trellis wire ( Tarara et al., 2004 ) highlights the need for nondestructive approaches to model

Free access

Martin P.N. Gent

market size, it did not affect spinach fresh mass ( Fukuda et al., 1999 ), but sap nitrate was reduced with supplemental light. After 4 d of nitrate withdrawal, leaf blades and petioles had 600 and 4000 mg·kg −1 (10 and 65 mmol·kg −1 ) nitrate

Free access

Jack A. Hartwigsen and Michael R. Evans

Cucumis sativus (cucumber), Pelargonium × hortorum (geranium), Tagetes patula (marigold), and Cucurbita pepo (squash) seed were sown into plug cells (5 ml volume) filled with a germination substrate containing peat, vermiculite, and perlite. After the seed were sown, the substrate was saturated with solution containing 0 (deionized water) 2500, or 5000 mg/L humic acid (HA). Additional treatments included seed which were sown into the substrate and saturated with nutrient solutions corresponding to the nutrient concentration of each humic acid solution. Seed were placed in a growth chamber and maintained at 22°C and under a 12-h photoperiod with a PPF of 275 μmol·m–2·s–1. After 10 d for cucumber and squash and 14 d for marigold and geranium, plants were harvested and root and shoot fresh mass recorded. Shoot fresh mass was not significantly affected by treatment for any of the species tested. Except for squash, root fresh mass was significantly increased by humic acid treatments. For cucumber, root fresh mass ranged from 0.24 g in deionized water to 0.34 g in 2500 and 5000 mg/L HA. Geranium root fresh mass ranged from 0.03 g in deionized water and 5000 mg/L HA to 0.05 g in 2500 mg/L HA. Marigold root fresh mass ranged from 0.02 g in deionized water to 0.03 g in 2500 and 5000 mg/L HA. Root fresh mass for nutrient controls were similar to those for deionized water.

Free access

Mark G. Lefsrud, Dean A. Kopsell, and Carl E. Sams

compounds (data not shown). Table 1. Mean pigment (mg/100 g −1 fresh mass) and glucosinolate (mg/100 g −1 dry mass) concentrations z in the leaf tissues of ‘Winterbor’ kale grown under specific wavelength using LEDs. In our study, peak

Free access

Joaquin A. Chong, Uttara C. Samarakoon, and James E. Faust

specific fresh mass of cut roses increased with increasing DLI or reduced canopy density ( Bredmose, 1998 ). Fig. 3. The effects of daily light integral (DLI) on final shoot fresh mass at different levels of the canopy (Level 1 to 5 being highest to lowest

Free access

Mark G. Lefsrud and Dean A. Kopsell

Plant growing systems have consistently utilized the standard Earth day as the radiation cycle for plant growth. However, the radiation cycle can easily be controlled by using automated systems to regulate the exact amount of time plants are exposed to irradiation (and darkness). This experiment investigated the influence of different radiation cycles on plant growth, chlorophyll and carotenoid pigment accumulation in kale (Brassica oleracea L. var. acephala D.C). Kale plants were grown in growth chambers in nutrient solution culture under radiation cycle treatments of 2, 12, 24, and 48 h, with 50% irradiance and 50% darkness during each time period. Total irradiation throughout the experiment was the same for each treatment. Radiation cycle treatments significantly affected kale fresh mass, dry mass, chlorophyll a and b, lutein, and beta-carotene. Maximum fresh mass occurred under the 2-h radiation cycle treatment. The maximum dry mass occurred under the 12-h radiation cycle treatment, which coincided with the maximum accumulation of lutein, beta-carotene, and chlorophyll a, expressed on a fresh mass basis. The minimum fresh mass occurred during the 24 h radiation cycle treatment, which coincided with the largest chlorophyll b accumulation. Increased levels of chlorophyll, lutein and beta-carotene were not required to achieve maximum fresh mass production. Environmental manipulation of carotenoid production in kale is possible. Increases in carotenoid concentrations would be expected to increase their nutritional contribution to the diet.

Full access

Ahmet Korkmaz, Wallace G. Pill, and Bruce B. Cobb

Raw, pelleted or germinated seeds of `Cortina' lettuce (Lactuca sativa L.) were sown in phenolic foam cubes preplant soaked in water or fullstrength nutrient solution (2 mmho·cm−1, 2 dS·m−1). The seeds were left uncovered or covered with fine vermiculite (grade 5), and seedling emergence characteristics were subsequently determined. Shoot fresh masses and their coefficients of variation (cv) by 9 days after planting (1 or 2 true leaves) and by 31 days after planting (4 or 5 true leaves) also were determined. Soaking the cubes in nutrient solution rather than water increased seedling emergence percentage and rate, and increased shoot fresh masses by 9 or 31 days after planting. This increased shoot fresh mass was accompanied by lower cv of shoot fresh mass by 9 days after planting, but not by 31 days after planting. Covering seeds with vermiculite decreased emergence from 99% to 93%, but increased shoot fresh mass by 9 and 31 days after planting when cubes were soaked in water, but not in nutrient solution. Seed treatments influenced shoot fresh mass at 9 and 31 days after planting in the order germinated > pelleted > raw. Germinated seeds resulted in lower cv of shoot fresh mass (24%) than raw or pelleted seeds (29%) by 31 days after planting. Thus, sowing germinated seeds into foam cubes soaked in full-strength nutrient solution, with or without covering the seeds with vermiculite, produced the heaviest and most uniform seedlings.

Free access

A.A. Watad, K.G. Raghothama, M. Kochba, A. Nissim, and V. Gaba

Explant growth and shoot multiplication of Spathiphyllum and Syngonium were compared on agar-solidified medium and interfacial membrane rafts floating on liquid medium. After 25 d of culture, greater shoot multiplication and fresh mass gain were achieved by plant material grown on rafts. Shoot multiplication of Spathiphyllum and Syngonium on membrane rafts reached a maximum at 25 d, whereas the fresh mass increased throughout the culture period (40 d). The number of shoots of Spathiphyllum and Syngonium material grown on membrane rafts remained constant between 25 and 40 d of culture. The plants grown on membrane rafts also developed more roots.