Search Results

You are looking at 1 - 6 of 6 items for :

  • "floral evocation" x
  • Refine by Access: All x
Clear All
Free access

Grete Waaseth, Roar Moe, Royal D. Heins, and Svein O. Grimstad

Varying photothermal ratios (PTR) were supplied to Salvia ×superba Stapf `Blaukönigin' during pre-inductive vegetative development with the exception of a short germination period under uniform conditions. In addition, both unvernalized plants and plants receiving a saturating vernalization treatment of 6 weeks at 5 °C were given two photosynthetic photon flux (PPF) levels (50 or 200 μmol·m-2·s-1) during subsequent inductive 16-hour long days. There were no effects of PTR treatments during vegetative development on subsequent flowering. However, the higher PPF level during inductive long days significantly accelerated floral evocation in unvernalized plants, lowering the leaf number at flowering. The effect was practically negligent after the vernalization requirement was saturated. In a second experiment, varying periods (4, 7, 10, and 14 days or until anthesis) at a PPF of 200 μmol·m-2·s-1 during 20-hour days were given at the beginning of a long-day treatment, either with or without preceding vernalization treatment. Flowering percentage increased considerably as the period at 200 μmol·m-2·s-1 was extended compared with plants grown at a lower PPF of 50 μmol·m-2·s-1. However, the leaf number on flowering plants was not affected, except in unvernalized plants receiving the highest PPF continuously until anthesis, where leaf number was reduced by almost 50%. We propose that the PPF-dependent flowering is facilitated either by the rate of ongoing assimilation or rapid mobilization of stored carbohydrates at the time of evocation. Abortion of floral primordia under the lower PPF (50 μmol·m-2·s-1) irrespective of vernalization treatment indicates that the assimilate requirement for flower bud development is independent of the mechanism for floral evocation.

Free access

Yi-Lu Jiang, Yuan-Yin Liao, Meng-Tzu Lin, and Wen-Ju Yang

Off-season flowering in red pitaya (Hylocereus sp.), a long-day plant, can be achieved using night-breaking (NB) treatment. Among the stages of bud development, stage 0 referred to induced but not yet differentiate any bracteole and stage 3 was the stage right before emerging floral buds and the bracteole differentiation was completed. Unlike floral bud emergence, bracteole differentiation was independent of the daylength and strongly influenced by the environmental temperature. The buds of higher stages were more effective in response to NB treatment and more sensitive to chilling injury (CI). Consequently, off-season flowers in autumn and winter trials were derived mainly from stage 2 and 3 buds and from stage 0 and 1 buds, respectively. In southern Taiwan, low night temperature between 10 Jan. and 7 Feb. 2011 may be the major factor, which delay bud development in off-season production. Therefore, we conducted a heating experiment in winter off-season production to proof our hypothesis and concluded that NB treatment should be applied along with night temperature elevation or after mid-February when the minimum night temperature is increasing.

Free access

Gilles Galopin, Laurent Crespel, Jean C. Mauget, and Philippe Morel

). The floral transformation sequence consists of three successive phases: 1) floral induction with the formation of the bud composed of eight vegetative preformed primordia (B 1 ); 2) floral evocation with an increase in the size of the meristem and an

Free access

Li-Yun Chen, Chien-Young Chu, and Min-Chang Huang

Experiments were conducted on 6-month-old chinese ixora (Ixora chinensis Lam.) from February 1999 to April 2000. Floral development was studied with scanning electron microscopy (SEM) to determine the flowering sequences. Morphological characters were used to clarify the stages of flowering processes. The time of organogenesis and flowering arrangement was established through field observations. Floral evocation occurred in early September, floral initiation occurred in the middle of September and floral differentiation began in late September. A distinctly convex apex with bracts around the shoulder indicated the beginning of reproductive development. Subsequently, primary inflorescence axes were observed and differentiated into secondary, tertiary, and quaternary inflorescence axes consecutively in about one and a half months. Once the terminal apex reached the inflorescence bud stage, it would flower without abortion, and this may be assessed as no return. The sepals, petals, stamens, and pistil were well developed thereafter and anthesis was achieved in January through March in the following year. The observation of floral differentiation sequences and investigation of floret arrangement made it certain that chinese ixora had cymose inflorescence (cyme), but not corymb. A quadratic equation was established to predict floret number from the differentiation level (a quantitative description of differentiation stage) of a developed inflorescence.

Free access

Bruce W. Wood

al., 2004 ; Worley 1979a , 1979b ) and by evidence that the final floral evocation processes (i.e., Phase III chromatin modifications) are intimately associated with tree carbohydrate reserves ( Wetzstein and Sparks, 1983 ) support this conclusion

Free access

Bruce W. Wood

vernalization and subsequent floral evocation ( Wetzstein and Sparks, 1983 ; Wood, 1989 , 1995 ); however, sugars are not the sole factor driving pistillate flower initiation nor AB ( Rohla et al., 2007a , 2007b ; Smith et al., 2007 ). Timely use of