Search Results

You are looking at 1 - 4 of 4 items for :

  • "fisheye photography" x
  • All content x
Clear All
Free access

Jens N. Wünsche, Alan N. Lakso, and Terence L. Robinson

Four methods of estimating daily light interception (fisheye photography with image analysis, multiple-light sensors, ceptometer, and point grid) were compared using various apple (Malus domestica Borkh.) tree forms: slender spindle, Y- and T-trellises, and vertical palmette. Interactions of tree form, time of day, and atmospheric conditions with light interception estimates were examined. All methods were highly correlated to each other (r 2 > 0.92) for estimated daily mean percent total light interception by the various tree forms, except that the point grid method values were slightly lower. Interactions were found among tree form, time of day, and diffuse/direct radiation balance on estimated light interception, suggesting that several readings over the day are needed under clear skies, especially in upright canopies. The similar results obtained by using the point grid method (counting shaded/exposed points on a grid under the canopy) on clear days may allow rapid, simple, and inexpensive estimates of orchard light interception.

Free access

Jens N. Wünsche, Alan N. Lakso, Terence L Robinson, Fritz Lenz, and Steven S. Denning

Although apple (Malus domestica Borkh.) system yield differences are generally related to whole-canopy light interception, this study tested the hypothesis that these orchard yields are related primarily to total light intercepted by the spur canopy. Seasonal leaf area development of different shoot types, exposed bourse shoot leaf net photosynthesis, fruit growth, whole canopy light interception (by image analysis of fisheye photographs) and relative light interception by different shoot types (by a laser assisted canopy scanning device) were estimated within four 14-year-old `Empire' apple production systems (slender spindle/M.9, central leader/M.7, central leader/M.9/MM.111 and Y-trellis/M.26). The final LAI values were CL/M.7 = 1.8, CL/9/111 = 2.3, SS/M.9 = 2.6 and Y/M.26 = 3.6. Exposed leaf net photosynthesis showed few differences and was not dependent upon the production system. Yields of the pyramidal shaped tree forms were 40 to 42 t·ha-1 while Y-trellis produced 59 t·ha-1, with similar fruit sizes. Again, yields were primarily related to the percentage of light intercepted by the whole canopy, 48% to 53% for conic forms versus 62% for the Y-trellis system. Laser analyses showed that the Y-trellis system intercepted about 20% to 30% more light with the spur canopy than the conic tree forms, supporting the hypothesis. Yields were better correlated with spur canopy LAI and spur canopy light interception than with extension shoot canopy LAI and light interception.

Full access

Angela Knerl, Brendon Anthony, Sara Serra, and Stefano Musacchi

forest canopy bulk density using six indirect methods Can. J. For. Res. 35 724 739 Lakso, A.N. 1976 Characterizing apple tree canopies by fisheye photography HortScience 11 404 405 Lakso, A.N. 1980 Correlations of fisheye photography to canopy structure

Full access

Bruce D. Lampinen, Vasu Udompetaikul, Gregory T. Browne, Samuel G. Metcalf, William L. Stewart, Loreto Contador, Claudia Negrón, and Shrini K. Upadhyaya

). However, collecting data on canopy light interception in orchards is time-consuming, and it is difficult to measure large areas. Several different methods of estimating canopy light interception have been used including fisheye photography ( Robinson and