Search Results

You are looking at 1 - 10 of 16 items for :

  • "fenarimol" x
  • Refine by Access: All x
Clear All
Free access

David Sugar and P.H. Westigard

Residues of two fungicides (dodine and fenarimol) and two insecticide/acaricides (amitraz and formetanate) on pear (Pyrus communis L.) leaves were reduced by over-tree sprinkler irrigation applied 24 or 72 hours after pesticide treatment. The difference in residue persistence following over-tree irrigation applied at 24 vs. 72 hours after pesticide treatment was significant only for fenarimol. Residues on leaves from nonirrigated trees at 96 hours post-treatment had declined 24% to 57% from initial levels. Over-tree irrigation further reduced residues by 14% to 47%. For all compounds except dodine, foliar residues measured at 96 hours post-treatment were reduced from initial levels to a greater extent by factors other than over-tree irrigation. Chemical names used: dodecylguanidine monoacetate (dodine); α-(2-chlorophenyl)-α-(4-chlorophenyl)-5-pyrimidinemethanol (fenarimol); N'-(2,4-dimethylphenyl) -N-[[(2,4-dimethylphenyl) imino]methyl] -N-methylmethanimidamide (amitraz); N,N-dimethyl -N'-[3[[(methylamino) carbonyl]oxy]phenyl]methanimidamide (formetanate).

Free access

Brad P. Melvin, Muraleedharan G. Nair, Joe M. Vargas, and A. Ronald Detweiler

Faeriefungin, an antibiotic produced by the actinomycete Streptomyces griseus var. autotrophicus MSU-32058/ATCC 53668, was tested in field trials on golf course fairways to determine if it could control annual bluegrass (Poa annua L.) summer patch effectively. Test sites with a history of severe summer patch outbreaks caused by Magnaporthe poae Landschoot and Jackson were chosen for study. Faeriefungin, when applied as a drench at 0.74 kg·ha-1, effectively controlled summer patch and was not significantly different than the fungicide fenarimol in three of four field trials. Faeriefungin may be an alternative to chemically controlling summer patch disease.

Free access

D.A. Rosenberger, T.L. Robinson, J.R. Schupp, C.A. Engle-Ahlers, and F.W. Meyer

Effects of three sterol-demethylation inhibiting (DMI) fungicides and a contact fungicide were compared over two years at each of two locations to determine if fungicide treatments had differential effects on productivity, fruit size and shape, or gross returns for `Empire' apples (Malus ×domestica Borkh.). Treatments were applied four to five times per year during the primary apple scab season. Effects of treatments were assessed by comparing fruit set efficiencies, number of fruit per tree, total harvested fruit weight, and fruit length: diameter ratios at harvest. No significant differences were noted among individual treatments in any of the four trials. However, when treatments were contrasted by grouping individual treatments, significantly larger fruit size was noted for triflumizole treatments vs. combined fenarimol and myclobutanil treatments in one of the four trials and for captan or mancozeb compared to fenarimol and myclobutanil treatments in two trials. None of the DMI fungicides compared in these trials had any consistent adverse affect on fruit size, total yield, or estimated gross return per hectare. We conclude that the plant growth regulator effects of DMI fungicides are inconsistent and are unlikely to have significant economic impact on commercial apple production.

Free access

Lambert B. McCarty, Leon T. Lucas, and Joseph M. DiPaola

Spring dead spot (SDS) [Gaeumannomyces graminis (Sacc.) von Arx & D. Olivier var. graminis Walker] is a serious disease of bermudagrass [Cynodon dactylon (L.) Pers.] throughout much of the southern United States and is believed to be at least partially influenced by the previous year's turfgrass management practices. Research was performed to: a) determine the efficacy of selected fungicide control measures; and b) determine the influence of N and K nutrient regimes on the expression of SDS symptoms in Tifway bermudagrass (C. dactylon x C. transvaalensis Burtt-Davy). Averaged over two sites in 2 years, a 72% reduction in SDS followed a fall application of benomyl at 12 kg·ha. Fenarimol applied at three rates (1.5, 2.3, and 3.0 kg·ha) on three fall dates reduced SDS by a combined average of 66%. A single application of propiconazole (2.5 kg·ha) reduced disease by an average of 56%. Application of N (98 kg·ha) in late fall increased SDS 128% in one test location. Application of potassium sulfate (269 kg K/ha) in late fall resulted in an average increase in SDS expression of 89% the following spring over all experiments. Turf managers with severe SDS should minimize heavy late-fall K applications and possibly use benomyl, fenarimol, or propiconazole for disease suppression. Chemical names used: α -(2-chlorophenyl)α -(4-chlorophenyl)-S-pyrimidinemethanol (fenarimol); [methyl 1(butylcarbamoyl)-2-benzimidazolecarbamate] (benomyl); 1-[[2-(2,4-dichlorophenyl)-4propyl-1,3-dioxolan-2-yl]methyl]--1H-1,2,4-triazole (propiconazole).

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty, and Ted Whitwell

Dwarf bermudagrass morphological characteristics following the use of plant growth regulators have not been reported. The objective of this greenhouse study was to determine short-term effects of seven plant growth regulators on clipping yield, chlorophyll concentration, and root mass of `TifEagle' bermudagrass. Growth regulators tested included ethephon, fenarimol, flurprimidol, maleic hydrazide, mefluidide, paclobutrazol, and trinexapac-ethyl. Two applications of each compound were made over a 6-week period. Root mass was reduced 39% by fenarimol and 43% by flurprimidol, while other PGRs had root mass similar to untreated turf. `TifEagle' bermudagrass treated with paclobutrazol, mefluidide, fenarimol, and flurprimidol averaged 45% less root mass than trinexapac-ethyl-treated turf. Trinexapac-ethyl was the only compound to reduce clippings and enhance turf quality without negative rooting effects. Chemical names used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol} (flurprimidol); (+/-)-(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol); (N-[2,4-dimethyl-5 [[(trifluoro-methyl)-sulfonyl] amino]phenyl]acetamide) (mefluidide); [1,2-dihydro-3,6-pyridazine-dione] (maleic hydrazide); [(2-chloroethyl)phosphonic acid] (ethephon); and (2-(2-chlorophenyl)-2-(4-chlorophenyl)-5-pyrimidinemethanol) (fenarimol).

Free access

Steven E. Newman, Michael J. Roll, and Ronald J. Harkrader

Quaternary benzophenanthridine alkaloids (QBAs) isolated from plants in the family Papaveraceae are effective for the control of some fungal diseases. Extracts from Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. For comparison, copper sulfate pentahydrate, piperalin, and fenarimol also were applied to mildew-infected plants within the same greenhouse at their respective labeled rates. One day after treatment, visible symptoms of mildew infection were reduced 60% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the symptoms of infection 50%, 75%, and 85%, respectively. Subsequent studies demonstrated that a tank mix of QBA and piperalin provided enhanced control of powdery mildew on rose. Results from this study indicate that QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.

Free access

Steven E. Newman, Michael J. Roll, and Ronald J. Harkrader

Quaternary benzophenanthridine alkaloids (QBAs) isolated from plants in the family Papaveraceae are effective for the control of some fungal diseases. Extracts from Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses (Rosa sp.) infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. For comparison, copper sulfate pentahydrate, piperalin, and fenarimol also were applied to mildewinfected plants within the same greenhouse at their respective labeled rates. One day after treatment, visible symptoms of mildew infection were reduced 60% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the symptoms of infection 50%, 75%, and 85%, respectively. Subsequent studies demonstrated that a tank mix of QBA and piperalin provided enhanced control of powdery mildew on rose. Results from this study indicate that QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.

Free access

Joe E. Toler, Lambert B. McCarty, and Jason K. Higingbottom

Annual bluegrass (Poa annua L.) continues to be a problem in bermudagrass golf greens overseeded with roughstalk bluegrass (Poa trivialis L. `Sabre) due to weed encroachment from adjacent fairways, lack of selective herbicide options, and weed diversity. A 2-year study was conducted on an overseeded `Tifgreen bermudagrass putting green to evaluate effects of herbicide treatments on overseeding and annual bluegrass control. Excellent annual bluegrass control (≥90%) and acceptable turfgrass cover (§70%) was achieved with oxadiazon at 2.2 kg·ha-1 a.i. applied 60 days before overseeding (DBO). Fenarimol (AS) at 4.1 kg·ha-1 a.i. (30 + 15 DBO) followed by 1.4 kg·ha-1 a.i. 60 days after overseeding (DAO) and dithiopyr at 0.6 kg·ha-1 a.i. (60 DBO + 120 DAO) also provided acceptable results. Dithiopyr at 0.4 kg·ha-1 a.i. (30 DBO + 120 DAO), dithiopyr at 0.3 kg·ha-1 a.i. (30 DBO + 30 + 120 DAO), and fenarimol (G) at 2.0 kg·ha-1 a.i. (45 + 30 DBO) followed by 0.8 kg·ha-1 a.i. 60 DAO provided inconsistent annual bluegrass control (55% to 75% in 1999 and 87% to 95% in 2000), but offered acceptable turfgrass cover (§70%) each year. The remaining treatments were generally ineffective and provided <50% annual bluegrass control one or both years. Oxadiazon applied 60 DBO at 2.2 kg·ha-1 a.i. provides an excellent option for annual bluegrass control in overseeded bermudagrass putting greens.

Free access

Steven E. Newman, Michael J. Roll, and Ronald J. Harkrader

There are many naturally occurring substances that have the potential to be adapted to modern pest control chemistry. Azadirachtin, an insect growth regulator, is one such naturally occurring compound that has been widely accepted in insect pest management. Quartenary benzophenanthridine alkaloids (QBAs) are known to be effective in the control of crop damaging fungal diseases. QBAs can be isolated from plants in the Papaveraceae. Extracts of Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. Copper sulfate pentahydrate (Phyton27), piperalin (Pipron), and fenarimol (Rubigan) were also applied to mildew infected plants within the same greenhouse at their respective label rates for comparison. One day after treatment, the mildew infection was reduced 50% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the infection 50%, 75%, and 80%, respectively. Nine days after application, the mildew infection of QBA treated plants was less than 5% of the leaflet surface area. QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.

Full access

M.L. Elliott

Eight demethylation inhibiting (DMI) fungicides were applied at two rates to `Tifgreen' bermudagrass [Cynodon dactylon (L.) Pers. ×x C. transvaalensis Burtt-Davy] to determine if DMI fungicides would produce a plant growth regulation effect on healthy bermudagrass. After three applications at 28- to 30-day intervals, compared to the control, both rates of cyproconazole, bromuconazole, propiconazole and triadimefon and the high rate of myclobutanil significantly decreased turfgrass quality on at least one evaluation date in each year of the study. The low rate of myclobutanil and both rates of tebuconazole and fenbuconazole did not adversely effect turfgrass quality in either year. For both rates of fenarimol, there was only one date during both years of the study when the turfgrass quality was significantly lower than the control. These results demonstrate the wide range of physiological activity the DMI fungicides can have on bermudagrass.