times and are often grown on subirrigation systems such as ebb-and-flood benches or flood floors. Therefore, the objective for this research was to evaluate the growth of a long-term greenhouse containerized crop in biodegradable containers compared with
require longer production times than bedding plants and are often grown in larger containers using subirrigation systems such as ebb-and-flood benches or flood floors. Therefore, the objective of this research was to evaluate the physical properties of
growth and yield ( Gómez et al., 2019 ; Resh, 2012 ). Bedding plants are often produced in soilless substrate and containers and periodically irrigated with a fertilizer solution using drip emitters or ebb-and-flood irrigation (Lieth and Oki, 2008). An
Ebb and Flood systems provide an efficient means of sub-irrigating greenhouse crops. However, substrate accumulations of soluble salts can limit plant growth.
Two treatment irrigation regimes, consisting of 1.70 EC and 0.86 EC, were applied to 7.0 cm pots filled with a standard peat:perlite growing medium. Treatment solutions were changed weekly. All containers were irrigated daily and substrate EC levels measured weekly in the upper, middle, and lower 2.33 cms of the container.
Following 6 weeks of observation, mean EC substrate levels ranged from 1.23 mmhos/cm to 4.42 mmhos/cm. Significant differences occurred between the upper and middle/bottom portions of the container. There was also a significant interaction between treatment irrigation regimes, substrate layer and week.
In both treatment regimes, salt accumulations in the middle and bottom layers of substrate were within acceptable levels for plant production.
variety of irrigation methods beyond overhead watering (e.g., drip irrigation and ebb-and-flood irrigation)—each with its own pattern of initial wetting and saturation that could potentially impact biocontainer durability during crop production. This work
Intensive, deep-batch, hydroponic systems that use float beds (FBs) are used extensively by the tobacco industry to produce transplants. FBs and a modified FB system with separate drying and flooding stages called ebb-and-flood (EF) beds were used to grow 12 diverse horticultural crops to maturity. Beds were filled with 570 L of water with 114 mg·L−1 N and 143 mg·L−1 K or 66 mg·L−1 N and 83 mg·L−1 K in 1994 and 1995, respectively. The EF beds were flooded for 6 hours, then drained for a 6-hour dry stage each 12 hours in 1994, and flooded for 1 hour and dried for 5 hours each 6-hour period in 1995 from May through August. Although both systems were suitable for producing Chinese water spinach (Ipomoea aquatica Forssk.—see footnote in Table 1), vegetable amaranth (Amaranthus tricolor L.), zinnia (Zinnia elegans Jacq.), and sweet basil (Ocimum basilicum L.), the EF system provided greater control over water availability and higher oxygen concentration in the root zone.
Information GenBank and Seqmatch from the Ribosomal Database Project to identify the bacteria to genus ( Cole et al., 2009 ). Bacterial impacts on geranium stem rot in ebb and flood systems. To examine the effects of the bacteria on disease development, ebb
that is collected for use in catchment basins (capture-and-reuse) or recirculating (ebb and flood) irrigation systems are characterized by elevated levels of physical, chemical, and biological contaminants that result in lower water quality, compared
The objective of this study was to quantify the optimum rates of water-soluble phosphorus (P) under constant nitrogen and potassium on the growth of new guinea impatiens (Impatiens hawkeri Bull.) `Paradise Violet' and vinca Catharanthus roseus `Pacifica Red' in soilless media in a recirculating subirrigation system. The experiment was designed so that only phosphate varied between treatments while all other nutrients remained constant. The ammoniacal N to nitrate N ratio was varied to counter balance increases in phosphate. Sodium was used as a counter ion to phosphate at higher concentrations of phosphate; sodium proved to be toxic at concentrations above 6 mm. In the new guinea impatiens experiment, there was a small increase in K due to the use of dibasic K phosphate to buffer pH. All growth parameters measured (height, leaf number, flower number, and shoot fresh and dry weight) showed significant differences with increasing P rate. Depending on the growth parameter measured, quadratic–linear models revealed an optimum P rate of 0.1 to 0.96 mm for new guinea impatiens `Paradise Violet' and 0.45 to 1.25 mm P for vinca `Pacifica Red'. For dry shoot weight, a common measure of optimum plant growth, the optimum P rate was 0.75 mm P for new guinea impatiens `Paradise Violet' and 0.67 mm P for vinca `Pacifica Red'. For flower number, a common measure of floral quality, the optimal P rate was 0.96 mm P for new guinea impatiens `Paradise Violet' and 1.25 mm P for vinca `Pacifica Red'. Electrical conductivity (EC) of the growing media increased significantly with increasing rate of P. At all rates, EC was significantly greater in the top layer than in the bottom and middle layers. The pH of the growing medium did not vary in relation to P concentration.
Three irrigation strategies [10% leaching, 0% leaching (pulse), and ebb-and-flood] and two constant liquid feed fertilizer treatments, 150 and 300 ppm N, were applied to poinsettias, `Freedom Red' and `V-17 Angelika Red', with a harvest date of November 25, 1995. There were no differences in plant dry weights among the three irrigation strategies at the 150 ppm N treatment. At 300 ppm N, 10% leaching irrigation grew plants with the greatest dry weights, followed by the ebb-and-flood treatment and the pulse treatment, respectively. The 10% leaching and ebb-and-flood plants had the greatest growth index, while the pulse treatment growth index was lower. Growth index was greatest for the 10% leaching strategy for `Freedom Red', while ebb-and-flood had the lowest index. The growth index was greater at 150 ppm N for `Freedom Red' compared to 300 ppm N. `V-17 Angelika Red' was not influenced by fertility level. Pulse irrigation grew marketable poinsettia plants at lower fertility levels.