Search Results

You are looking at 1 - 2 of 2 items for :

  • "diurnal response" x
  • All content x
Clear All
Free access

Diana D. Lange and Arthur C. Cameron

Shelf life (defined by visual quality) of freshly harvested greenhouse-grown sweet basil was maintained for an average of ≈ 12 days at 15C. Chilling injury symptoms were severe at storage temperatures of 5C and below. Shelf life was found to be only 1 and 3 days at 0 and 5C, respectively. Moderate chilling injury was noted at 7.5 and 10C. Harvesting sweet basil later in the day (i.e., 1800 or 2200 hr) increased shelf life by almost 100% when harvested shoots were held at 10, 15, and 20C, compared to harvesting at 0200 or 0600 hr. However, the time of day of harvest did not alter the development of visual chilling injury symptoms or improve shelf life at 0 or 5C.

Free access

Desmond R. Layne and J.A. Flore

A series of experiments were conducted with one-year-old potted sour cherry trees to evaluate the effects of source reduction (removal of 70% of the expanded leaves = Defol.) or source enhancement (continuous illumination = C.L.) on source leaf gas exchange. There was a significant increase in net CO2 assimilation (A) and stomatal conductance (gs) of Defol. within one day in contrast to the non-defoliated control (Cont.). Defol. had lower daily dark respiration rates (Rd) and higher A values throughout the 14 h diurnal photoperiod than Cont. Defol. had daily assimilation rates 50% higher than Cont. in as early as 3 days. One month later, specific leaf weight, leaf chlorophyll and A was higher in Defol. Non-defoliated plants were also placed under either a 14 h photoperiod (Cont.) or a 24 h photoperiod (24h). A of 24h was reduced from Cont. by 50% after one day. The diurnal response of A in Cont. was removed when plants were put in C.L. Following 7 days in C.L., 70% defoliation of 24h plants resulted in a complete recovery from photosynthetic inhibition within 48 hours. The short-term effects of source manipulation on photochemical and carboxylation efficiencies, photorespiration and stomatal limitations will also be addressed.