Search Results

You are looking at 1 - 10 of 40 items for :

  • "dithiopyr" x
  • Refine by Access: All x
Clear All
Free access

James T. Brosnan, Gregory K. Breeden, and Patrick E. McCullough

been reported ( Abdallah et al., 2006 ; Heap, 2010 ) and could become more widespread should practitioners rely solely on quinclorac for POST control of smooth crabgrass. Dithiopyr is a pyridine herbicide labeled for pre-emergence (PRE) and early

Free access

Christopher A. Proctor, Matt D. Sousek, Aaron J. Patton, Daniel V. Weisenberger, and Zachary J. Reicher

-N 3 ,N 3 -dipropyl-6-(trifluoromethyl)-1,3-benzenediamine], pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine], and dithiopyr [S,S′-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate] are

Free access

Patrick A. Jones, James T. Brosnan, Gregory K. Breeden, José J. Vargas, Brandon J. Horvath, and John C. Sorochan

, taking an average of 6 d to reach 50% green cover. Many of the PRE herbicides used to control annual weeds in bermudagrass turf have been shown to reduce bermudagrass root growth, including prodiamine, indaziflam, and dithiopyr ( Jones et al., 2013

Free access

Nanik Setyowati and Leslie A. Weston

Dithiopyr (Dimension, Monsanto) is a turfgrass herbicide currently under evaluation for use in ornamentals. Granular herbicide depth and seed placement were evaluated in greenhouse studies with tolerant or susceptible weeds. Dithiopyr was applied preemergence to weeds at the rate of 2.24 kg/ha to Maury silt loam soil. Weed seeds were planted routinely at 0.64 cm depth. Dithiopyr placed at the soil surface or 0.64 cm in depth caused the greatest injury to seedlings, followed by dithiopyr at 1.28 cm depth. Dithiopyr at 2.54 and 3.81 cm below the surface had no effect upon seedling growth. When seeding depth was investigated, seed placed at 0.64, 1.28 or 1.91 cm below the surface showed greatest seedling injury when dithiopyr was routinely applied at 0.64 cm depth. Seed placement on the soil surface resulted in the least injury to weeds.

Peat moss was added to Maury silt loam soil and to sand to investigate the influence of organic matter upon activity. Soil with 2% peat resulted in the least injury to selected weed seedlings while sand, and sand plus up to 3% peat showed greatest injury. Sand amended with 5 and 6% peat also resulted in less injury to weed seedlings. Ivy leaf morningglory and KY 31 fescue were most tolerant of dithiopyr while barnyardgrass and large crabgrass were most sensitive. Dithiopyr uptake, translocation and metabolism studies will be conducted with susceptible and tolerant weed and woody ornamental species.

Free access

Travis W. Gannon, Matthew D. Jeffries, James T. Brosnan, Gregory K. Breeden, Kevin A. Tucker, and Gerald M. Henry

dithiopyr, indaziflam, oxadiazon, prodiamine, and pendimethalin are labeled for selective control of smooth crabgrass ( Digitaria ischaemum Schreb.) and large crabgrass [ Digitaria sanguinalis (L.) Scop.] in turf ( Anonymous, 2012a , 2012b , 2012c

Free access

Peter H. Dernoeden

Festuca species are being seeded into golf course roughs and natural or out-of-bound areas as alternative turfgrasses to replace perennial ryegrass (Lolium perenne L.) in the mid-Atlantic region. The tolerance of fine-leaf fescues to herbicides targeted for annual bluegrass (Poa annua L.) control, such as ethofumesate and prodiamine, is unknown. The objectives of this field study, therefore, were to assess the tolerance of `Rebel II' tall fescue (Festuca arundinacea Schreb.), and the fine-leaf fescue species `Reliant' hard fescue (Festuca longifolia Thuill.), `Jamestown II' Chewings fescue (Festuca rubra L. ssp. commutata Gaud.), and `MX 86' blue sheep fescue (Festuca glauca L.) to various rates, combinations, and times of application of ethofumesate and prodiamine. `Rebel II' was most tolerant of ethofumesate; however, sequential rates ≥0.84 + 0.84 kg·ha-1 reduced quality for 1 or more weeks and 2.24 + 2.24 kg·ha-1 caused unacceptable injury. Single applications of ethofumesate at rates of 0.56, 0.84, and 1.12 kg·ha-1, and sequential treatments of 0.56 + 0.56 and 0.84 + 0.84 kg·ha-1 reduced `Reliant' quality temporarily. Sequential treatments of high rates (i.e., 1.12 + 1.12 and 2.24 + 2.24 kg·ha-1), however, significantly reduced `Reliant' cover. `Jamestown II' was very sensitive to ethofumesate, but recovered from single applications of 0.56, 0.84, and 1.12 kg·ha-1; sequential applications (≥0.84 + 0.84 kg·ha-1) caused unacceptable injury, and rates ≥1.12 + 1.12 kg·ha-1 caused significant loss of cover. The cultivar MX 86 tolerated single applications of 0.56 to 2.24 kg·ha-1 of ethofumesate, but sequential treatments generally reduced quality to unacceptable levels. In one study, `Jamestown II' and `MX 86' were more severely injured when ethofumesate (1.12 or 2.24 kg·ha-1) was applied in October rather than in November. The fescues generally best tolerated a single, November application of ethofumesate at ≤1.12 kg·ha-1. Prodiamine (0.73 kg·ha-1) caused only short-term reductions in quality of `Jamestown II', but was generally noninjurious to the other fescues. Ethofumesate tank-mixed with prodiamine (0.84 + 0.36 or 1.12 + 0.73 kg·ha-1) elicited some short-term reduction in quality, but the level of injury was generally acceptable and injured fescues had recovered by spring. Chemical names used: [±]2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulfonate (ethofumesate); N 3,N 3-di-n-propyl-2,4-dinitro-6-(trifluoromethyl)-m-phenylenediamine (prodiamine); S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridine-dicarbothioate (dithiopyr).

Free access

Aaron J. Patton, David W. Williams, and Zachary J. Reicher

Zoysiagrass (Zoysia japonica Steud.) requires few inputs and provides high-quality turf in the transition zone, but is expensive to sprig or sod. Establishment by seed is less expensive than vegetative establishment, but little is known about renovation of existing turf to zoysiagrass using seed. Two experiments were performed to determine effects of herbicides and seeding rates on establishment of zoysiagrass in Indiana and Kentucky. In the first experiment, interseeding zoysiagrass into existing perennial ryegrass (Lolium perenne L.) without the use of glyphosate before seeding resulted in 2% zoysiagrass coverage 120 days after seeding (DAS). In plots receiving glyphosate before seeding, zoysiagrass coverage reached 100% by 120 DAS. In the second experiment, MSMA + dithiopyr applied 14 days after emergence (DAE) or MSMA applied at 14+28+42 DAE provided the best control of annual grassy weeds and the greatest amount of zoysiagrass establishment. Applying MSMA + dithiopyr 14 DAE provided 7% less zoysiagrass coverage compared to MSMA applied 14 DAE at one of the four locations. Increasing the seeding rate from 49 kg·ha-1 to 98 kg·ha-1 provided 3% to 11% more zoysiagrass coverage by the end of the growing season at 3 of 4 locations. Successful zoysiagrass establishment in the transition zone is most dependent on adequate control of existing turf using glyphosate before seeding and applications of MSMA at 14+28+42 DAE, but establishment is only marginally dependent on seeding rates greater than 49 kg·ha-1. Chemical names used: N-(phosphonomethyl) glycine (glyphosate); monosodium methanearsenate (MSMA); S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(triflurormethyl)-3,5-pyridinedicarbothioate (dithiopyr).

Free access

B. Jack Johnson

Three field experiments were conducted to determine if several preemergence and postemergence herbicides were safe to apply to creeping bentgrass (Agrostis stolonifera L. `Penncross') maintained at putting green height. When dithiopyr was applied at preemergence in late February or early March, the emulsifiable concentrate formulation (≤1.7 kg·ha-1) and granular formulation (≤1.1 kg·ha-1) did not reduce the quality or cover of creeping bentgrass. Applied at preemergence, bensulide plus oxadiazon at 6.7 + 1.7 kg·ha-1 and 13.4 + 3.4 kg·ha-1 reduced turfgrass quality for 2 to 3 weeks and 8 weeks after treatment, respectively. When MON 12051 and monosodium salt of methylarsonic acid (MSMA) (≤0.14 and ≤2.2 kg·ha-1, respectively) were applied at postemergence to creeping bentgrass in early June, the reduction in turfgrass quality varied from slight to moderate for 1 to 2 weeks, but turfgrass fully recovered with no effect on turfgrass cover. Quinclorac applied at postemergence in early June at ≥0.6 kg·ha-1 severely reduced creeping bentgrass quality and cover for ≥8 weeks. Diclofop at 0.6 kg·ha-1 applied to creeping bentgrass in June, July, or August maintained consistently higher quality and cover ratings than when applied at ≥1.1 kg·ha-1. Diclofop applied at 0.6 kg·ha-1 in June and repeated at the same rate in July reduced quality of creeping bentgrass less than when applied at 1.1 kg·ha-1 at any date. Chemical names used: O,O-bis (1-methylethyl) S-{2-[(phenylsulfonyl)amino]ethyl} phosphorodithioate (bensulide); (±)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); S,S-dimethyl-2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate (dithiopyr); methyl-5-{[(4,6-dimethoxy-2-pyrimidinyl)amino] carbonylaminosulfonyl}-3-chloro-1-methyl-1-H-pyrazol-4-carboxylate (MON 12051); 3-[2,4-dicloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); 3,7-dicloro-8-quinolinecarboxylic acid (quinclorac).

Free access

Lambert B. McCarty, D. Wayne Porter, Daniel L. Colvin, Donn G. Shilling, and David W. Hall

Greenhouse studies were conducted at the Univ. of Florida to evaluate the effects of preemergence herbicides on St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] rooting. Metolachlor, atrazine, metolachlor + atrazine, isoxahen, pendimethalin, dithiopyr, and oxadiazon were applied to soil columns followed by placement of St. Augustinegrass sod on the treated soil. Root elongation and biomass were measured following application. Plants treated with dithiopyr and pendimethalin had no measurable root elongation and root biomass was severely (>70%) reduced at the study's conclusion (33 days). Root biomass was unaffected following isoxaben and oxadiazon treatments, but oxadiazon applied at 3.4 kg·ha-1 reduced root length by 50%. Atrazine at 2.2 kg·ha-1 and metolachlor + atrazine at 2.2 + 2.2 kg·ha-1, did not reduce root length in one study, while the remaining atrazine and metolachlor + atrazine treatments reduced cumulative root length and total root biomass 20% to 60%. Metolachlor at 2.2 kg·ha-1 reduced St. Augustinegrass root biomass by >70% in one of two studies. St. Augustinegrass root elongation rate was linear or quadratic in response to all treatments. However, the rate of root elongation was similar to the untreated control for plants treated with isoxaben or oxadiazon. Chemical names used: 6-chloro-N-ethyl-N'-(l-methylethyl)-1,3,5-triazine-2,4-diamine(atrazine);S,S-dimethyl2-(difluoromethyl)-4-(2-methylpropyl)-6-(t∼fluoromethyl)-3,5-pyridinecarbothioate (dithiopyr); N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide (isoxaben); 2-chloro-N-(2-ethyl- 6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin).

Free access

Jeffrey F. Derr

Tolerance of transplanted black-eyed Susan (Rudbeckia hirta var. pulcherrima Farw.), lanceleaf coreopsis (Coreopsis lanceolata L.), shasta daisy (Chrysanthemum × superbum Bergmans ex. J. Ingram), purple coneflower [Echinacea purpurea (L.) Moench.], and blanket flower (Gaillardia aristata Pursh) to preemergence herbicides was evaluated in container trials. Herbicides were applied at the maximum use rate and twice the maximum use rate. Dithiopyr, pendimethalin, and prodiamine provided excellent control of spotted. spurge (Euphorbia maculata L.) and yellow woodsorrel (Oxalis stricta L.) with little injury to the five herbaceous perennials. DCPA, oxadiazon, and metolachlor were tolerated by all treated species, but these chemicals provided lower control of one or both weed species. Oryzalin, isoxaben + trifluralin, and napropamide caused unacceptable injury and shoot fresh-weight reductions in some of the perennials at one or both application rates. Chemical names used: dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate (DCPA); S,S-dimethyl 2-(difluoromethyl) -4-(2 -methylpropyl)-6-trifluoromethyl-3,5-pyridinedicarbothioate(dithiopyr);N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide(isoxaben); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide(metolachlor);N,N-diethyl-2-(l-naphtha1enenyloxy) propanamide(napropamide);4-(dipropylamino)-3,5-dinitrobenzenesulfonamide (oryzalin);3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethy1)-l,3,4-oxadiazol-2-(3H)-one (oxadiazon); N-(1-ethylpropyl) -3,4-dimethyl-2,6-dinitrobenzamine (pendimethalin); N,N-di-n-propyl-2,4-dinitro-6-(trifluoromethyl)-m-phenylenediamine (prodiamine); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzamine (trifluralin).