realistic, especially if growers take advantage of the ability to control intensity and spectra. Current LED grow lights do not take full advantage of the capabilities of LEDs. Specifically, the dimmability of LED grow lights has received little attention
Electronic dimming of high-intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W metal halide (MH) and high-pressure sodium (HPS) lamps were equipped with a dimmer system using silicon-controlled rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and the 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power to the MH lamps decreased, the peak at 589 diminished to equal the 545-nm peak. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (Pfr: Ptot) remains unchanged for both lamp types.
Electronic dimming of high intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400 W metal halide (MH) and high pressure sodium (HPS) lamps were equipped with a dimmer system using silicon controlled rectifiers (SCR) as high speed switches. Phase control operation turned the line power off for some period of the AC cycle. At full power the electrical input to HPS and MH lamps was 480 W (RMS) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased the 589 nm peak remained constant while the 595 nm peak decreased, equalling the 589 nm peak at 345 W input, and was almost absent at 270 W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another, smaller peak, at 545 nm. As input power to the MH lamps decreased the 589 nm peak diminished to equal the 545 nm peak. As input power approached 428 W the 589 nm peak shifted to 570 nm. While a spectral change was observed as input power was decreased in both MH and HPS lamps, the phytochrome equilibrium ratio (Pfr/Ptot) remain unchanged for both lamp types.
). According to the PCA, the correlation coefficient between g S and transpiration rate and Dim1 is high ( Fig. 8 ). It is reported that during filling stage, an appropriate amount of phosphorus can promote leaf g S , transpiration rate, and reduce CO 2
., 2019 ). Dimmable LED lights can be interfaced with quantum sensors and control systems, allowing for adaptive lighting control ( van Iersel and Gianino, 2017 ). With adaptive lighting, supplemental light is provided so that the PPFD of sunlight and
. To achieve this, effective lighting strategies should be developed that result in efficient use of the supplemental light to speed up growth. Dimmable LED fixtures can be used to develop improved lighting strategies because their light output can be
because the value of such plants lies in their flowers. We examined the effects of supplemental lighting on leaf senescence and flower opening during the indoor management of roses. Dim light at 10 to 20 μmol⋅m −2 ⋅s −1 indoors was not sufficient for the
Abstract
The effects of gibberellic acid (GA3), 1,2-dihydropyradizine 3,6-dione (maleic hydrazide), succinic acid-2,2-dim ethylhydrazide (SADH), (2-chloroethyl)phosphonic acid (ethephon) and their combinations on the growth and sex expression of the monoecious cucumber ‘SMR-58’ were studied. Maleic hydrazide (MH), SADH, and ethephon inhibited growth and induced femaleness when applied to foliage at concn of 500 ppm, 2000 ppm, and 100 ppm, respectively. Foliar sprays of 1500 ppm GA3 stimulated growth and increased maleness. The effect of GA was generally enhanced in combination with either MH, SADH, or ethephon. Combination of SADH and ethephon resulted in plants that were as short as those treated with SADH alone and as female as those treated w ith ethephon alone. Ethephon-SADH combination reduced plant size to the same extent as SADH alone and coned maturity.
High temperature stress is a major limitation to commercial production of habanero pepper (Capsicum chinense Jacq.) in tropical and subtropical regions. The ability to sustain physiological activity under stress is an important trait for newer varieties. We evaluated leaf thermotolerance [based on the cell membrane stability (CMS) test] of three habanero pepper varieties to: 1) determine genetic variability in CMS among the genotypes studied; and 2) to assess correlations between CMS, photosynthesis and chlorophyll fluorescence [(CF), an indicator of membrane-dependent photosystem II quantum efficiency, ΦPSII]. The genotypes evaluated were TAM Mild Habanero (TMH, a recently developed mild habanero pepper) and its closely related parents (Yucatan and PI 543184). Net CO2 assimilation rate (An) of intact leaves was measured in the field and leaf samples collected and exposed to heat stress (55 °C for 20 min) in temperature-controlled water baths under dim light conditions. The CF was assessed before and after the heat treatment. The CMS was highest in PI 543184, lowest in TMH and intermediate in Yucatan. All genotypes maintained high An rates in the field (25 ± 6 μmol·m-2·s-1); however, correlations between An and CMS were weak. The Φ values were similar among the genotypes (∼0.8) under nonstress conditions, but differed significantly following stress exposure. PI 543184 had the highest post-stress ΦPSII values (0.506 ± 0.023), followed by Yucatan (0.442 ± 0.023) and TMH (0.190 ± 0.025). Observed differences in CMS and ΦPSII indicate plasticity in the response to heat stress among these genotypes.
Increasing numbers of vegetable growers purchase their transplants from specialized transplant producers. Possible deterioration of transplants during transportation limits the market size as well as the potential sources of high quality transplants. To determine best conditions for transportation of seedlings, tomato (Lycopersicon esculentum; `Durinta') seedlings with visible flower buds were placed for 4 days under varied air temperature (6, 12, or the conventional transportation temperature of 18 °C) and light intensity 0 (conventional darkness) or dim light at 12 μmol·m-2·s-1 PAR). Plants were evaluated for visual quality, photosynthetic capacity, growth and ultimately fruit yield. Lower temperatures and illumination significantly maintained visual quality of the seedlings. Lower temperature maintained high photosynthetic capacity of the seedlings during transportation. Growth and development of the seedlings were significantly affected by higher temperature resulting in significantly delayed growth and development. Number of fruits set on the first truss was significantly reduced when seedlings were at 18 °C during transportation. Overall, simulated transport at 6 °C under light showed the best transportability without experiencing negative impact for the 4-day simulated transportation. Seedlings at 6 °C in darkness and at 12 °C under light and in darkness also showed satisfactory transportability. Seedlings at 18 °C exhibited serious quality deterioration of seedlings, delay in early growth and development, loss of flower buds on the first truss and yield reduction, which agrees with the fact that conventional transportation is currently able to be no longer than 3 days in duration.