While it is important for strawberry breeders to know the genetics of day-neutrality, evidence for inheritance of the trait is still contradictory. It is not known how many genes govern the trait, to what extent each gene affects phenotype and how the environment influences gene expression. Several recent studies point toward a polygenic threshold model and a rejection of the single gene model. A linkage mapping approach is being used to determine if day neutrality can be mapped to several different quantitative trait loci (QTL) that may represent different genes. To confirm that a linkage mapping approach is the method of choice for QTL detection, a small population of the cross `Honeoye' x `Tribute' consisting of 57 progeny segregating for the trait was genotyped with single dose restriction fragment (SDRF) markers and a preliminary genetic map was created using Join Map 3.0. Results separated the molecular markers into at least 24 linkage groups and several putative QTL for day neutrality were identified indicating that the technique will be successful. However, due to the complexity of the octoploid genome of strawberry, over 200 progeny need to be genotyped to build a complete map that includes the 56 linkage groups of the genome. Furthermore, for determining QTL, an accurate phenotypic evaluation is critical. Individuals of the population above were phenotyped under field conditions (East Lansing, Mich.) in 2002 and 2003, and are now being analyzed under controlled temperature and photoperiod conditions for confirmation of the QTL detected for the trait. A larger population of the same cross with over 200 progeny has also been generated and will be mapped using molecular markers after determining their phenotype under the same environmental conditions.
While it is of great significance for strawberry breeders to know the genetics of day-neutrality (DN), evidence for inheritance of the trait is still contradictory. A linkage mapping approach is being used to determine how many QTL regulate DN and the proportion of the variability explained by each. A preliminary genetic linkage map was constructed for 125 individuals of the day neutra× short day (SD) cross `Tribute' × `Honeoye' using single dose restriction fragments (SDRFs) of amplified fragment length polymorphic (AFLP) markers. Over 500 SDRFs from 55 AFLP primer combinations were used to build the map using the software tool Join Map 3.0 at a LOD score of 3.0. Single marker analysis using WinQTL cartographer software previously determined 27 SDRF markers to co-segregate with DN for 57 individuals of the mapping population phenotyped in the field for the years 2002 and 2003, indicating putative QTL for DN. These markers were included in the linkage analysis and seven of them mapped to five different linkage groups that may indicate the quantitative nature of the trait. For determining QTL and percentage of phenotype governed by each QTL, however, accurate phenotypic evaluation is critical. Therefore, controlled environment (growth chamber) studies were used to obtain flowering response data under SD and long day (LD) conditions with two day/night temperatures. This study was conducted for the entire mapping population (over 400 individuals) so that QTL detected can be confirmed by fine mapping the QTL regions. We will also test how robust the QTL detected are, by analyzing the same segregating population at six different field locations in the United States (California, Maryland, Michigan, Minnesota, New York, and Oregon) for their flowering response under SD and LD conditions.
The inheritance of day-neutrality in octoploid Fragaria L. was investigated in crosses between day-neutral (DN) × short day (SD) and DN × DN types using F. ×ananassa Duchesne in Lamarck cultivars and elite selections of F. virginiana Miller and F. chiloensis (L.) Miller. Genotypes were considered as DN if they flowered under both the SDs of spring before 30 May (<14 hours) and the long days of summer after 24 July (>15 hours). Wide ranges in the percentage of DN progeny were found among the families regardless of species background (30% to 87% in DN × SD and 22% to 93% in DN × DN crosses). None of the families fit the segregation ratios expected if DN was regulated by recessive alleles at one locus, and only about half of the families fit the segregation ratios expected if a single dominant allele regulated DN. Several two-gene models fit the segregation data better than the single locus ones, but none of the genetic models tested fit the DN segregation ratios at the ends of the distribution range. The wide range observed in the percentage of DN progeny across all the families is most consistent with a polygenic model. Several other kinds of observations supported the multigenic regulation of DN: 1) Different DN parents crossed to the same SD genotype often produced different percentages of DN progeny, 2) Some of the day-neutrality sources were more powerful than others in producing of DNs, and 3) None of the DN parents produced 100% DN progeny, which would be expected if there were homozygous dominant DN individuals. Specific combining abilities for DN and flowering strength were significant, while general combining abilities for these traits were not. Our results suggest that parental combinations can be selected that will generate very high proportions of DN progeny that bloom for long periods of time.
Selfed progenies were generated using 10 day-neutral genotypes from the University of California (UC) strawberry breeding program as parents and their offspring were classified for late-summer flowering response. The grandparents of each selfed progeny included one of four day-neutral genotypes and one of eight short-day genotypes. Under the null hypothesis of genetic control by a single locus with the allele for day-neutrality dominant to the allele for short-day flowering response, all of these day-neutral parent genotypes must be heterozygous and their selfed offspring were expected to fit a 3:1 ratio of day-neutral: short-day phenotypes. The percentage of day-neutral offspring observed over all progenies was 70.9%, and was significantly smaller than the expected value of 75% (χ2 1 = 5.08, P < 0.02). The percentage of day-neutral offspring for individual progenies ranged from 41.4% to 84.8%, and highly significant heterogeneity was detected among progenies (χ2 9 = 40.3, P < 0.01). Selfed progeny means for the cumulative late-summer flowering score calculated using the day-neutral fraction of offspring varied from 1.31 to 2.35 and progeny means for the number of inflorescences per plant ranged from 3.5 to 9.9; these differences among progenies were highly significant (P < 0.01). These observations can be used to conclusively reject the hypothesis that day-neutrality in this domestic strawberry population is controlled by a single locus.
Greenhouse and garden chrysanthemums are quantitative short-day (SD) plants for flower bud initiation (FBI) and qualitative (obligate) SD plants for flower bud development (FBD). Continuous or intermittent application of red light in the middle of the dark period (night), inhibits FBI. The chrysanthemum breeding program has been selecting for day-neutral (DN) types, i.e. that will undergo FBI and FBD under any photoperiod. The inheritance of DN was studied using six cultivars (n = 2 SD types, n = 4 DN types) that were crossed in a complete diallel over two crossing periods. Pollinations were replicated and ovules were counted. Histograms of self and cross seed set showed a distribution from 0% to 100%, with the majority of pollinations below 30%. Mean self seed set (2.6%) was less than the mean cross seed set (32.8%), indicating the presence of a self incompatibility system. Parents and F1 progeny were grown under LD conditions (red light, night interruption, 2200-0200 HR) and high temperatures (30 °C day/25 °C night, to screen for heat delay insensitivity). F2 progeny could not be generated due to self incompatibility. The fraction of flowering: non-flowering progeny and the number of days to first flower was recorded on the flowering individuals for comparison with the parents. Due to small progeny numbers, reciprocal crosses were bulked prior to Chi-square tests (1:1, 3:1, 1:3). The number of days to first flower ranged from 27 to 93+ in all progeny with significantly earlier and later outliers present. Most Chi-square tests were not significant, indicating that the inheritance of DN and heat delay insensitivity are not controlled by a single gene. Additive and epistatic effects may also be present.
Commercial chrysanthemums are short day (SD) plants. Recently, several day neutral (DN) garden genotypes have been identified. Both glasshouse and garden cultivars vary in heat delay insensitivity (HDI). This research analyzed yield components (seed set, germination, yield potential) and tested a DN/HDI ideotype for its effectiveness. Progeny from a 6 × 6 diallel were embryo rescued, clonal ramats were grown in two environments (glasshouse—long days; field—long to short days) and evaluated for flowering, early flowering response groups, thermozero temperature response, low long day leaf number (LDLN), high leaf initiation rates, and low mean stem lengths of the terminal shoot. Self seed set ranged from 0% to 8% while outcross seed set was 0% to 92%. General and specific combining ability were highly significant for seed set, the reciprocals, and their interactions. Germination averaged 67%, while yield potential was 44%. Cotyledon pigmentation in embryo rescued seedlings was 7% albinos, 15% anthocyanin (transposable elements), and 78% normal (green). SD parents did not flower in either photoperiod although PPSL-10 carried alleles for DN. SD x DN crosses produced some DN progeny and fit a 1:3 chi square ratio (DN:SD), indicating DN to be recessive. However, DN x DN crosses also fit a 3:1 chi square ratio, due to HDI. No progeny flowered within the 3 to 6 week ideotype; visible bud date had a heritability of h 2 = 0.50. Most progeny were within the LDLN range (h 2 = 0.72). Several leaf initiation rates exceeded the ideotype (h 2 = 0.003); plant height also matched the ideotype (h 2 = 0.66). Both visible bud and flowering dates require significant improvement before progeny match the DN/HDI ideotype.
Variation in 14 horticultural traits of native octoploid Fragaria L. from North and South America was examined in a greenhouse. Significant levels of variation were found for all but a few of the traits at the species, subspecies, regional and genotypic level, with the highest amount of variation generally being partitioned among genotypes. Fragaria chiloensis (L.) Miller was superior to F. virginiana Miller for crown number, fruit weight, soluble solids and seed set, while Fragaria virginiana was superior for runner production, peduncle length, fruit number, fruit color and winter hardiness. Fragaria chiloensis ssp. pacifica Staudt had the highest soluble solids and among the earliest bloom dates, highest crown numbers and highest seed set. Fragaria chiloensis ssp. chiloensis f. chiloensis (L.) Duch. produced the largest fruit and among the earliest bloom dates and longest peduncles. Fragaria chiloensis ssp. chiloensis f. patagonica (L.) Duch. had among the highest crown numbers and the highest percentage seed set. Fragaria virginiana ssp. platypetala (Rydb.) Staudt produced the most crowns and its fruit ripened earliest. Fragaria virginiana ssp. glauca (Wats.) Staudt were the latest flowering, had the darkest fruit color and the most flowering cycles. Fragaria virginiana ssp. virginiana Duch. displayed the most winter dieback, the longest peduncles, and the highest flower and runner numbers. No significant differences were observed in any of the examined traits between F. chiloensis ssp. pacifica and F. chiloensis ssp. lucida, or F. virginiana ssp. grayana and F. virginiana ssp. virginiana. A number of individual genotypes were superior for more than one trait. CFRA 0024 possessed unusually high crown numbers, was extremely early blooming and displayed multiple fruiting cycles. CFRA 1121 had unusually long peduncles and much higher than average values for fruit weight, soluble solids, fruit color and seed set. CFRA 0094 was extremely early flowering and had much darker fruit color than most other F. chiloensis genotypes. CFRA 0368 flowered unusually early and had among the largest fruit. CFRA 0366 possessed unusually long peduncles and the largest fruit of any North American genotype. CFRA 0560 and CFRA 1369 had an unusual combination of multiple flowering cycles and high runner production. CFRA 1170 and 1171 were unusually late fruiting and had high numbers of large fruit on long peduncles. CFRA 1385 and JP 95-3-1 had extremely high flower numbers, long peduncles and large fruit.
, these results indicate that photoperiodic classifications alone are inadequate to describe the expression of remontancy in strawberry, and screening for “day neutrality” in cool temperate regions may not translate into development of cultivars that
Two groups of Fragaria decaploid (2n = 70, x = 7) breeding populations were studied. The first was derived from pentaploid (2n = 35) and hexaploid (2n = 42) natural or synethetic interspecific hybrids between octoploid (2n = 56) F. chiloensis (L.) Duch. or F. virginiana Duch. both from California, and various Fragaria diploids (2n = 14). Their chromosome number was doubled with colchicine or through the naturally generated unreduced gametes. They were selfed repetitively, intercrossed, and open pollinated. Gametic viability of the hermaphroditic and female decaploid hybrids exceeded 50%. The hybrids exhibited heterosis for runner production and vegetative vigor. Fragaria chiloensis bred for large fruit and desirable fruit qualities, and, in combination with diploids F. vesca L. and F. viridis Duch., resulted in hybrids that produced a single early spring crop and prolific runner production throughout the summer. Fragaria virginiana L. derivatives were characterized by high pollen fertility, and by day neutrality (photo-insensitivity). Together, they may contribute genes for adaptation to various regions and climates of the world and for pest and disease resistance. The second and most important group of decaploids involved here were those derived from hybrids between day-neutral octoploid cultivars (F. ×ananassa) crossed to F. vesca or F. viridis. This group of decaploids combined the genomes of the best octoploid cultivars with those of the above diploid species: facilitating the incorporation of genes responsible for high yield, day neutrality, and excellent fruit quality into the decaploid strawberries.