Search Results

You are looking at 1 - 10 of 80 items for :

  • "container crops" x
  • All content x
Clear All
Free access

Kenneth G. McCabe, Christopher J. Currey, James A. Schrader, David Grewell, Jake Behrens, and William R. Graves

fertilizers for container-crop production, alternative fertilizers made from biorenewable, nonsynthetic sources have been explored. Some sources include fish emulsions, liquid soybean-based fertilizer, corn gluten meal, millorganite, and, more recently, soy

Free access

David J. Colangelo and Mark H. Brand

Plastic 208-L industrial barrels (14 total) were modified for use as soil-filled lysimeters to study the nitrogen dynamics of a typical container crop production system. The top of each barrel was removed and the bottom was fitted with a drain hole and filter fabric. The drain was then connected via tubing to a 2-L leachate collection vessel made from a length of 15.24-cm-diameter PVC pipe that had been capped on one end. All barrels and connected collection vessels were recessed into a grassed slope. Barrels were filled with homogeneous B and C horizon soil to simulate soil conditions of a typical container nursery. Uniform Rhododendron `Catawbiense Album' plants in 4.5-L containers were arranged atop the barrellysimeters at four plants per barrel. Irrigation/fertilizer treatments included fertilized pulse trickle irrigation (four replications), fertilized overhead irrigation (four replications), and unfertilized controls corresponding to each irrigation treatment (three replications each). All fertilized plants received 10 g of 17N–6P–10K 8- to 9-month controlled-release fertilizer at the beginning of the crop cycle. Leachate from the barrel-lysimeters was collected weekly and total volume, total Kjeldahl N, nitrate-N, and ammonium-N were determined. Peak nitrate-N levels were well above the current drinking water standard for both irrigation treatments at certain times during the year. Cumulative nitrate-N mass output was similar for both irrigation treatments. A nitrogen balance for the complete production system including fertilizer and irrigation water input, plant material, potting media, soil in the lysimeter barrels and leachate output from the barrels has also been determined.

Free access

Kenneth G. McCabe, James A. Schrader, Christopher J. Currey, David Grewell, and William R. Graves

two plant categories, whereas ≈4 billion containerized plants were sold throughout the entire container-crops industry. Because of the nearly universal dependence on petroleum-plastic containers across the industry, production of these plants consumes

Free access

James A. Schrader, Gowrishankar Srinivasan, David Grewell, Kenneth G. McCabe, and William R. Graves

An important obstacle to long-term sustainability in the container-crops industry is the nearly universal reliance on containers made from petroleum-based plastics. Although petroleum-plastic containers favor efficiency and profitability, their use

Free access

Jeb S. Fields, James S. Owen Jr., and Holly L. Scoggins

container production systems must receive quality fresh water daily or multiple times per day, in the absence of precipitation, to prevent actual or perceived plant water stress. Because of this, growers often apply excess water to container crops to

Free access

James E. Altland, Charles Krause, James C. Locke, and Wendy L. Zellner

The objective of this research was to determine the suitability of a steel slag product for supplying micronutrients to container-grown floriculture crops. Geranium (Pelargonium ×hortorum L.H. Bailey ‘Maverick Red’) and tomato (Solanum lycopersicon L. ‘Megabite’) were grown in 11.4-cm containers with a substrate composed of 85 peatmoss : 15 perlite (v/v). A group of containers referred to as the commercial control (C-control) were amended with 4.8 kg·m−3 dolomitic lime and fertilized with a commercial complete fertilizer providing macro and micronutrients (Jack’s 20N–4.4P–16.6K–0.15Mg–0.02B–0.01Cu–0.1Fe–0.05Mn–0.01Mo–0.05Zn) at a concentration of 100 mg·L−1 nitrogen (N). Another group of containers, referred to as the micronutrient control (M-control), were amended with a commercial granular micronutrient package at 0.9 kg·m−3 and dolomitic lime at 4.8 kg·m−3. The M-controls were fertilized with 7.1 mm N (100 mg·L−1 N) with ammonium nitrate and 2 mm potassium phosphate. A final group of containers were amended with 1.2, 2.4, or 4.8 kg·m−3 of steel slag and fertilized with 3.6 mm ammonium nitrate and 2 mm potassium phosphate. Both control groups resulted in vigorous and saleable plants by the conclusion of the experiment. In both crops, chlorophyll levels, root ratings, and shoot dry mass were lower in all steel slag–amended plants compared with either control groups. In geranium, foliar nutrient concentrations suggest Cu and Zn were limiting whereas B and Zn were limiting in tomato. Based on the results of this research, steel slag does not provide sufficient micronutrients, most notably B, Cu, and Zn, to be the sole source of micronutrient fertilization in container-grown crops.

Free access

Raul I. Cabrera

Seven nursery grade (8-9 month duration), polymer-coated, controlled-release fertilizers (CRF) were topdressed or incorporated into a 2 peat: 1 vermiculite: 1 sand (by volume) medium to yield the same amount of N per container. The pots (0.5 L) were uniformly irrigated with DI water every week to produce a target leaching fraction of 25%. Leachate N contents (ammonium plus nitrate), employed as indicators of N release, allowed for comparison of CRF performance as a function of temperature changes over a season. Two distinct N leaching (i.e., release) patterns were observed over the 180-day experimental period. The fertilizers Osmocote 18-6-12FS (Fast Start: OSM-FS), Prokote Plus 20-3-10 (PROK), Osmocote 24-4-8HN (High N: OSM-HN) and Polyon 25-4-12 (POLY) exhibited a N leaching pattern that closely followed changes in average daily ambient temperatures (Tavg) over the season. This relationship was curvilinear, with N leaching rates per pot (NLR) being highly responsive to Tavg changes between 20 and 25 °C. Temperatures above 25 °C produced an average maximum NLR of 1.27 mg·d-1 for these fertilizers. OSM-FS, PROK, and OSM-HN had the highest cumulative N losses over the experimental period. In contrast, the CRF group formed by Nutricote 18-6-8 (270: NUTR), Woodace 20-4-12 (WDC), and Osmocote 18-6-12 (OSM) showed a more stable N leaching pattern over a wider range of temperatures, with rates about 30% to 40% lower than those in the temperature-responsive CRF, and averaging a maximum NLR of 0.79 mg·d-1 for Tavg >25 °C. NUTR and WDC had the lowest cumulative N losses over the season. Soluble salt readings paralleled N leaching for each CRF, indicating similar leaching patterns for other nutrients. Incorporation produced significantly higher cumulative N losses than topdressing, but without effect on the actual N leaching pattern over the season. Regardless of the N formulation in the CRF, over 85% of the N recovered in the leachates was in the nitrate form.

Full access

Carl J. Rosen, Thomas R. Halbach, and Bert T. Swanson

Composting of municipal solid waste (MSW) has received renewed attention as a result of increasing waste disposal costs and the environmental concerns associated with using landfills. Sixteen MSW composting facilities are currently operating in the United States, with many more in the advanced stages of planning. A targeted end use of the compost is for horticultural crop production. At the present time, quality standards for MSW composts are lacking and need to be established. Elevated heavy metal concentrations in MSW compost have been reported; however, through proper sorting and recycling prior to composting, contamination by heavy metals can be reduced. Guidelines for safe metal concentrations and fecal pathogens in compost, based on sewage sludge research, are presented. The compost has been shown to be useful in horticultural crop production by improving soil physical properties, such as lowering bulk density and increasing water-holding capacity. The compost can supply essential nutrients to a limited extent; however, supplemental fertilizer, particularly N, is usually required. The compost has been used successfully as a sphagnum peat substitute for container media and as a seedbed for turf production. High soluble salts and B, often leading to phytotoxicity, are problems associated with the use of MSW compost. The primary limiting factor for the general use of MSW compost in horticultural crop production at present is the lack of consistent, high-quality compost.

Free access

James E. Altland and Jennifer K. Boldt

Numerous mulch products have been evaluated for use in container crops. Pine bark nuggets have been shown to provide effective control of mulberry weed [ Fatoua villosa (Thunb.) Nakai] ( Penny and Neal, 2003 ), prostrate spurge ( Chamaesyce

Full access

J Austin Gimondo, Christopher J. Currey, Darren H. Jarboe, Martin Gross, and William R. Graves

sourced from wastewater treatment systems, has shown particular promise for providing an alternative to synthetic fertilizers for container-crop production ( Mulbry et al., 2005 , 2006 ; Solovchenko et al., 2016 ). The potential benefits of using