Search Results

You are looking at 1 - 10 of 35 items for :

  • "coated seed" x
  • Refine by Access: All x
Clear All
Free access

Matteo Serena, Bernd Leinauer, Rossana Sallenave, Marco Schiavon, and Bernd Maier

germination and establishment of cowpea seeds coated with hydrophilic polymers compared with uncoated seeds, possibly as a result of lower oxygen levels surrounding the coated seeds. In 2006, a cornstarch coating was introduced for turfgrass seeds ( Arends

Open access

L. H. Halsey and J. M. White

Abstract

Raw and coated seed of carrot (Daucus carota L. cv Danvers 126) were planted with Stanhay, Earthway and Planet Jr. seeders on October 1, 1976 at Sanford and Zellwood, Florida, and on October 8 and November 16 at Gainesville, Florida. Carrot roots were harvested and graded in February, April, and May, 1977. Differences in weight of marketable carrot roots occurred between planters at 3 of the 4 locations, whereas response to seed coating was independent of locations. The effect of planters on numbers of marketable carrots varied significantly at 2 of the locations, with no effect of seed coating related to location. No difference was found in response to raw or coated seed in number or weight of marketable carrots, whereas carrots from coated seed were slightly larger than from uncoated seed.

Free access

Tina Wilson, Robert Geneve, and Brent Rowell

Membrane damage associated with rapid influx of water during imbibition can play a role in the poor emergence and seedling vigor associated with sweet corn germination. Film-coating as a seed treatment has been used to improve germination and vigor in sweet corn and this improvement may not be associated with changes in imbibition rate. Two seed lots of shrunken-2 variety sweet corn, low-vigor `Even Sweeter' and high-vigor `Sugar Bowl', were treated with a hydrophilic polymer film-coating and evaluated for differences in emergence and water uptake. Both cultivars were grown at 19, 21, and 26 °C with no effect on emergence due to film-coating. Imbibition curves were established for untreated and hydrophilic film-coated seeds. Film-coated seeds showed an 18% increase in fresh weight compared to untreated seeds for both cultivars during a 6-h period. Bulk conductivity tests resulted in no significant mean difference between untreated and hydrophilic-treated seeds after 24 h. These seed lots have been treated with a hydrophobic polymer and are currently being evaluated for cold temperature emergence and imbibition rates. Water entry during imbibition will also be compared for untreated sugary (su) and shrunken-2 (sh2) seeds using the fluorescent compound trisodium salt, 8-hydroxypyrene-1, 3,6-trisulfonic acid (HPTS).

Open access

Eric E. Roos

Abstract

Coated and raw (uncoated) lettuce (Lactuca sativa L.) seed obtained from commercial sources were subjected to 6 storage conditions (ranging from 21° C, 90% relative humidity (RH) to 5°, 40% RH) for a period of 3 years. Four types of packaging material differing in moisture-barrier properties were used. Samples were removed periodically for moisture and germination tests. Under poor storage conditions, coated seed deteriorated more rapidly than the raw seed controls. Under favorable storage conditions, both coated and raw seed retained full viability for the 3 years.

Full access

M.D. Richardson and K.W. Hignight

turfgrass species in three soil types. Materials and methods Two commercially available, coated seed sources were used for these studies, including Smart Seed (Pennington Seed, Madison, GA) and Turf Builder Grass Seed with Water Smart (Scotts, Marysville, OH

Full access

Bernd Leinauer, Matteo Serena, and Devesh Singh

, surfactants, and polymers, pesticides to protect from birds and rodents, and chemicals that stimulate or delay germination ( Scott, 1989 ). The first published greenhouse study using coated turfgrass seed concluded that adhesives used to coat seed with

Free access

Matteo Serena, Bernd Leinauer, Rossana Sallenave, Marco Schiavon, and Bernd Maier

conducted under saline conditions or when coated seeds are used. A wide variety of substrata have been used to investigate the effect of salinity on germination of turfgrasses. Dewey (1962) used salinized soil to test wheatgrass ( Agropyron desertorum

Free access

A.G. Taylor, D.B. Churchill, S.S. Lee, D.M. Bilsland, and T.M. Cooper

Color sorting was performed to upgrade seed quality by removal of fluorescent coated seeds. The fluorescent coating was attributed to sinapine leakage from nonviable seeds. Nine seedlots, three seedlots each of cabbage (Brassica oleracea L. Capitata group), broccoli, and cauliflower (B. oleracea L. Botrytis group) were custom coated. Seed samples were pretreated before coating with or without 1.0% NaOCl for 10 minutes to enhance leakage. All samples revealed a percentage of seeds with fluorescence. The light emission from selected fluorescent and nonfluorescent coated seeds was quantified by fiber-optic spectrophotometry. Fluorescence was expressed from 400 to 560 nm, with peak emission being from 430 to 450 nm. These data confirmed our visual interpretation of blue-green fluorescence. The ratio of light emission from fluorescent compared to nonfluorescent coated seeds ranged from 4.5 to 7.0 for all samples and averaged 5.7. An ultraviolet (UV) color sorter was employed to separate fluorescent (reject) from nonfluorescent (accept) coated seeds. The percentage of nonfluorescent coated seeds (averaged over seedlot and NaOCl pretreatment) before and after sorting was 89.5% and 95.9%, respectively. Therefore, color sorting was able to remove a high percentage of fluorescent coated seeds with an average loss (rejection of nonfluorescent coated seeds) of 6%. An increase in the percent germination was recorded in eight of the nine seedlots following color sorting, and the greatest improvement was obtained with seedlots of medium quality. Germination of three medium quality lots was increased by 10 to 15 percentage points. The average increase in germination with or without NaOCl pretreatment was 8.2 and 5.5 percentage points, respectively. In conclusion, the germination of Brassica seedlots could be improved by separating (removing) fluorescent from nonfluorescent coated seeds. UV color sorting technology was employed to demonstrate that seed conditioning could be conducted on a commercial basis to upgrade seed quality.

Open access

M. Sachs, D. J. Cantliffe, and T. A. Nell

Abstract

Germination rate of sand-coated pepper (Capsicum annum L.) seed (sand grain size < 75μm for an inner coat and 75–105 μm for an outer coat layer) was faster than clay-coated seed but was slower than raw seed. Part of the germination reduction in sand-coated seeds was caused by the water-soluble Gelvatol binder used. High oxygen (O2) levels promoted the germination of sand-coated seed to a rate comparable to that of raw seed. This suggests that even with a porous sand-coating material, O2 may be limiting for the germinating seed. When inorganic O2-releasing compounds (BaO2 or NaBO3) were incorporated into the sand material, the germination of pepper seed was further inhibited.

Free access

Tina Wilson, Robert Geneve, and Brent Rowell

One possible influence film-coating may have on seeds is modifying water uptake and electrolyte leaking during imibibition. Film-coating is a seed treatment that can improve sweet corn germination, especially under cold soil conditions. Two shrunken-2 sweet corn varieties (`Even Sweeter' and `Sugar Bowl') were treated with a polymer film-coating and evaluated for water uptake patterns during imibibition. `Even Sweeter' is a low-vigor sweet corn, while `Sugar Bowl' is a high-vigor variety. Standard germination tests were performed according to AOSA rules and suggest film-coated seeds germinated at a slower rate than untreated seeds. After 4 days of imibibition, `Sugar Bowl' film-coated seeds had 5% germination, while untreated seeds had ≈20% germination. However, after 7 days, film-coated seeds had 94% germination with untreated seeds at 80% germination. Results were similar for `Even Sweeter'. Bulk electrical conductivity readings were taken over 24 h to determine the amount of electrolyte leakage during imibibition. Low-vigor `Even Sweeter' had 92% higher overall leakage than high-vigor `Sugar Bowl'. Additional conductivity readings were taken for both seed lots every 2 h for 12 h. Film-treated seeds leaked 15% less than untreated seeds for `Sugar Bowl'. However, `Even Sweeter' film-coated seeds actually leaked 17% more than the untreated seeds. In both cases, 70% of electrolyte leakage occurred within the first 12 h of imibibition. An imibibition curve was established for the two seed lots comparing untreated and film-coated seeds. During the first 6 h of water uptake, film-treated seeds weighed ≈50% more than the untreated seeds for both `Even Sweeter' and `Sugar Bowl'. Pathways for water uptake as influenced by film-coating shrunken-2 seeds will also be presented.