Search Results

You are looking at 1 - 10 of 127 items for :

  • "cell volume" x
  • Refine by Access: All x
Clear All
Free access

Elizabeth T. Maynard, Charles S. Vavrina, and W. Dennis Scott

Muskmelon (Cucumis melo L. cvs. Superstar and Mission) transplants were grown in cellular seedling trays of polystyrene or styrofoam, with individual cells ranging in volume from 7 to 100 cm3, transplanted to the field, and grown to maturity in Florida and Indiana during the 1993 and 1994 growing seasons. Seedling leaf area, shoot and root weights before transplanting, and shoot dry weight 20 days after transplanting increased linearly with increasing cell volume in Florida. Thirty days after transplanting, vine length showed significant linear and quadratic trends with respect to cell volume in Indiana. In Florida, early and total yields increased linearly as transplant cell volume increased for `Mission' in both years and for `Superstar' in 1994. In Indiana, early yields increased linearly as transplant cell volume increased for `Mission' in 1994 and for `Superstar' in both years, but cell volume did not consistently affect total yield. Transplant tray effects on early and total yield unrelated to linear or quadratic effects of cell volume occurred in both locations, but these effects were not consistent.

Free access

Sandra R. Menasha* and Milton E. Tignor

Sweet corn (Zea mays L.) is difficult to transplant due to poor root regeneration. Despite reduced yields, growers are transplanting sweet corn to hasten maturity time to target profitable early markets in the Northeast. Researchers have ascribed the negative impacts on yield to restricted rooting volume. Therefore, the impacts plug cell volume had on sweet corn transplant root architecture and biomass accumulation were investigated. `Temptation' sweet corn was sown in volumes of 15, 19, 14, and 29 mL correlating to transplant plug trays with plug counts of 200, 162, 128, and 72 plugs per tray. Plug cells were exposed to three substrate environments; a dairy manure based organic compost media, a commercial soil-less germination mix, and the soil-less media supplemented 2X with 200 ppm soluble 3-3-3 organic fertilizer. A 4 × 3 factorial randomized complete-block experimental design with two blocks and five replicates per treatment was repeated twice in the greenhouse. For each experiment a total of three center cells were harvested from each replicate for analysis using the WinRhizo Pro root scanning system (Regent Instruments Inc., Montreal). Three cells per treatment were also transplanted into 8-inch pots to stimulate field transplanting. Based on mean separation tests (n = 30), increased cell volume before transplanting significantly increased root surface area, average diameter, and root volume after transplanting (n = 18). Mean root surface area for a 29-mL cell was 30% greater than a 15-mL cell before transplanting and 22% greater after transplanting. Plug cell volume also significantly impacted shoot and root biomass (P <0.0001). A 14-mL increase in cell volume resulted in a root and shoot dry weight increase of about 15%.

Free access

Joseph M. Kemble, Jeanine M. Davis, Randolph G. Gardner, and Douglas C. Sanders

Compact-growth-habit (CGH) tomatoes (Lycopersicon esculentum Mill.) do not require the pruning, staking, and tying required for many fresh-market tomato cultivars. In 1990, 5-week-old transplants of the CGH tomato breeding line NC 13G-1 were grown in single rows with in-row spacings of 31, 46, 61, and 76 cm and in double rows with in-row spacings of 31 and 46 cm. NC 13G-1 produced high early and total season marketable yields when grown in either double-row treatment compared to any single-row treatment. In 1991 and 1992, 4- and 5-week-old NC 13G-1 transplants were produced in five root cell volumes (8.6, 13.6, 27.0, 37.1, and 80.0 cm3), transplanted into double rows with an in-row spacing of 46 cm, and evaluated for yield. Five-week-old transplants produced in 37.1- and 80-cm3 cells flowered sooner after transplanting and produced higher early season yields than 4-week-old transplants produced in the three smaller cells. Midseason yields increased quadratically and late-season yields decreased quadratically as root cell volume increased. Total season marketable yields did not differ among treatments. In 1991, production costs were influenced by root cell volume, but not in 1992. In 1992, net returns for the four smallest cell volumes were similar, and lower than for transplants grown in the largest cell volume. In both years, highest net returns were achieved with transplants produced in 37.1-cm3 cells. Considering the estimated 1992 net returns of $17,000/ha, production of CGH tomatoes may provide an alternative for staked-tomato growers concerned with labor availability and production costs, even though marketable yield from NC 13G-1 was lower than with a conventional cultivar under the standard system.

Free access

Joseph M. Kemble, Jeanine M. Davis, Randolph G. Gardner, and Douglas C. Sanders

The influence of flat cell volume (cavity containing growing medium) on transplant growth and development of NC 13G-1, a compact-growth-habit, fresh-market tomato (Lycopersicon esculentum Mill.) breeding line, was compared to that of a normal growth habit line, NC 8288. Transplants of each line were produced in four cell volumes (3.3, 27, 37.1, and 80cm3) for 5 weeks, evaluated and then transplanted to larger containers, and grown until anthesis. During the first 5 weeks after seeding, plant dry weight did not differ between the lines; however, plant height of NC 13G-1 was ≈60% of the height of NC 8288. For both lines, number of days from sowing to anthesis decreased as root cell volumes increased. For space-efficient production of large quantities of compact-growth-habit tomato transplants, flats with root cell volumes as small as 27 and 37 cm3 can be used without greatly delaying anthesis.

Free access

Sandra Menasha, Milton Tignor, and David Heleba

Transplanting sweet corn is commonly practiced in the northeast U.S. to improve stand establishment and promote early harvest. However, early spring storms and labor constraints can delay transplanting when establishment is most desirable. `Temptation' sugary enhanced (se) sweet corn transplants 0-, 2-, 4-, 6-, and 8-days-old beyond the “grower” 2-week growth period were field planted to explore the effects delayed planting combined with plug cell volume differences would have on transplant ear quality and early yields. The transplant treatments were evaluated in a two-way factorial (five delayed planting dates × three plug volumes) arranged in a split-plot design with five replications. Field sites were the whole plot treatment and the factorial treatments were the split-plots. All transplants were planted on 24 May 2004 at the two field sites. The final density was ≈22,000 plants/acre. Transplant cell volume (15, 19, and 29 mL) had no significant effect on ear quality and total marketable yield. Ear length was significantly affected by field site (P≤ 0.0001) and ear diameter was significantly affected by planting delay (P= 0.0145). Field site (P≤ 0.0001) and planting delay (P= 0.0090) both significantly affected the number of early marketable ears/acre. The results indicate that transplants can remain in the plug cells up to 20 days (2 weeks + 6 day delay) before the delay negatively impacts ear diameter, tip fill, and early marketable yield.

Open access

Jia Tian, Yue Wen, Feng Zhang, Jingyi Sai, Yan Zhang, and Wensheng Li

were examined and photographed on a 4×/0.10 plane using a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). To determine the average cell volume, the width and length of cells/1-mm 2 unit area were measured from microscopic images, corresponding to

Free access

Guiwen W. Cheng and Patrick J. Breen

Fruit size, number of receptacle cells, and mean cell size were determined throughout development of secondary fruit of three day-neutral strawberry (Fragaria ×ananassa Duch.) cultivars grown in a greenhouse. Cells were counted after enzymatic separation of receptacle tissue, and mean cell volume was estimated from cell count and receptacle tissue volume. Size of mature fruit was small (3.8 g) in `Tillikum', medium (11.5 g) in `Tristar', and large (15.6 g) in `Selva'. Fruit size was correlated with the number of achenes per berry. Mature fruit of `Tillikum' had a lower fruit fresh weight per achene and lower achene population density (achenes per square centimeter) than the larger-fruited cultivars. The average number of cells per mature fruit was 0.72 × 106, 1.96 × 106, and 2.94 × 106 for `Tillikum', `Tristar', and `Selva', respectively. The relative difference among cultivars in the number of receptacle cells was established by the time of anthesis. In all cultivars, cell division was exponential for 10 days following anthesis and ceased by the 15th day. Mean cell volume increased slowly during active cell division, but rose rapidly and linearly for 10 days after cell division halted. Mean cell volume of all cultivars increased > 12-fold after anthesis and was ≈ 6 × 106 μm3 in mature fruit. The genotypic variation in the size of mature fruit was not the result of large differences in either duration of cell division after anthesis or mean cell volume, but rather was primarily due to differences in the number of receptacle cells established by anthesis.

Free access

Aimin Liu and Joyce G. Latimer

The growth of `Mirage' and `StarBrite' watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] transplants were evaluated in TODD 125, 100A, 150, 175, and 200 flats with root cell volumes of 18, 26, 36, 46, and 80 cm3, respectively. The effects of rooting volume restriction (RVR) on the number of leaves developed, leaf expansion, and shoot and root dry weight gain increased with time measured at 5, 10, 15, or 20 days after seedling emergence (DAE) for `Mirage' or 4, 8, 12, or 16 DAE for `StarBrite'. Generally, the greatest effect of RVR occurred between 10 and 15 DAE for `Mirage' and 8 and 12 DAE for `StarBrite' for most measurements. Root: shoot dry weight ratios generally were similar among the cell volumes. In a 1993 field test with `StarBrite' grown in the previously described flats, transplants from the TODD 125s produced the least growth and the poorest yield in terms of fruit per plant, total number of marketable fruit, and total yield. Transplants from TODD 200s produced a higher total yield than plants from other cell volumes.

Free access

Richard K. Volz, F. Roger Harker, and Sandy Lang

Puncture force was measured in `Gala'apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] fruit from 16 to 175 days after full bloom over 2 years using a range of circular flat-tipped probes (1 to 11 mm diameter) to test the firmness of each fruit. The area-dependent (Ka) and perimeter-dependent (Kp) coefficients of puncture force were determined and were used to calculate the indicative puncture force approximating a standard 11.1-mm-diameter Effegi/Magness-Taylor probe for even the smallest fruit. Ka declined exponentially throughout fruit development with much greater changes occurring closer to bloom. In contrast, maximum Kp occurred at 107 to 119 days after full bloom before declining progressively. Estimated firmness (using a 11.1-mm-diameter probe) declined constantly from 16 days after full bloom. Ka was associated with developmental changes in cortical tissue intercellular air space, cell volume and cell packing density although relationships changed throughout fruit growth. However seasonal change in Kp was not associated with any obvious anatomical change in the cortex.

Full access

John R. Duval and D. Scott NeSmith

Age and cell size can have various effects on subsequent transplant production. The interaction of the two have not been studied in triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Seedless watermelon production is costly due to high seed prices, therefore it is necessary to optimize transplant performance in the field, and it is often thought that triploid watermelons are less hardy than their diploid counterparts. A 3 × 3 factorial design was established for 2 years to determine the effects of cell sizes 1.5, 3.4, and 7.9 inch3 (25, 56, and 130 cm3) and transplant age (4, 6, and 8 weeks) on the triploid watermelon `Genesis'. The diploid cultivar `Ferrari' was also planted for comparison. Seedling survival was affected by transplant age in 1997, and by cell size in 1998. Early main vine growth showed significant interaction between transplant age and cell size, with older transplants grown in the largest cells producing the longest vines. Early yield of 6-week-old transplants of `Genesis' was higher than 4- or 8-week-old transplants in 1997. Eight-week-old transplants of `Ferrari' outperformed younger transplants in 1997 and 1998. Results show that `Genesis' triploid watermelon transplants could be handled similarly to the diploid `Ferrari' without consequence.