Search Results

You are looking at 1 - 10 of 51 items for :

  • "capillary mat" x
  • Refine by Access: All x
Clear All
Full access

Ursula K. Schuch, Jack J. Kelly, and Trent Teegerstrom

water requirements in displays. Capillary mats have been used for producing floriculture ( Bjerre, 1983 ; Morvant et al., 1998 ) and foliage ( Neal and Henley, 1992 ) crops in the greenhouse, and their use has been advocated for maintaining plants in

Free access

R.L. Geneve, S.T. Kester, and J.W. Buxton

A capillary mat-mist system was developed to provide near constant media water contents at differing quantities of mist. Media water contents were reduced by increasing the capillary mat height above a constant water table maintained at bench level. Increased tensions from 0 to 10 cm above the water table reduced water content in Oasis, rockwool, and peat-perlite by 35.4%, 27.6%, and 17.4%, respectively. There was no difference in water content for each medium when the mist quantity ranged between 600 and 1800 mL·m-2·h-1, except when the capillary mat was at 9 cm above the water table and mist volume was 300 mL·m-2·h-1. Chrysanthemum cuttings rooted best when water content was highest regardless of media. Using the peat-perlite medium, water content had the greatest impact on rooting when the mist volume was low (600 mL·m-2·h-1). Relative water content of cuttings was lowest during the first 5 days of sticking and both reduced media water content and mist quantity resulted in the lowest internal water status for the cuttings.

Free access

Jennifer Marohnic, Robert Geneve, and Jack W. Buxton

Capillary mats were used to vary the water content in oasis blocks during mist propagation of chrysanthemum cuttings. Mats placed on the surface of the propagation bench extended over the edge of the bench and downward a distance of either 0 or 20 cm. Oasis blocks with chrysanthemum cuttings `Boaloi' and `Salmon Charm' were placed on mats under intermittent mist (10 seconds every 5 minutes) between 5 am and 8 pm. Relative water content, mL of water/gram oasis, and leaf water potential were measured at noon every 5 days. After 26 days number of roots per cutting was evaluated. Water content in the oasis block was reduced by 49% (450 to 219 mL/g dry weight of oasis) by hanging the capillary mat 20 cm over the edge of the bench compared to 0 cm treatment. Cuttings showed an increase in leaf relative water content from 49% and 51% at day 1 to 65% and 71% by day 11 for `Boaloi' and `Salmon Charm', respectively. Following initial root formation, leaf relative water content increased to 85%. Over the course of the experiment `Boaloi' and `Salmon Charm' showed an average reduction in leaf water potential of 0.14 and 0.08 MPA, respectively. `Boaloi' showed overall higher root numbers than `Salmon Charm'; however, no difference in rooting between mat treatments was observed.

Free access

Robert L. Geneve, Jack W. Buxton, and Myra Stafford

Capillary mat subirrigation provides uniform water in the growing medium to optimize seedling growth in plugs. It also offers a closed system that allows the grower to regulate the amount of water available to seedlings and to reduce water runoff. However, root outgrowth into the capillary mat can be a significant problem. Copper hydroxide (Spin Out) was painted on the bottom, outside surface of the plug container to control root outgrowth into the capillary mat. Three square and two octagonal plug sizes were treated with copper. Regardless of the plug size or shape, copper treatment was an effective treatment to control root outgrowth in marigold seedlings. Copper treatment reduced overall root outgrowth by 80% to 92%. Marigold and geranium seedlings in copper-treated square plug containers showed some reduced shoot and root development during plug production, but there were no differences in copper-treated plants compared to nontreated plants following transplanting to cell packs.

Free access

Guogiang Hou, Jack W. Buxton, and Donna Switzer

To prevent rooting into an irrigation mat, five water porous materials, perforated black plastic, perforated ground cover, polyester, woven polypropylene and porous plastic, were evaluated as mat covers. Only polyester, woven polypropylene and porous plastic prevented penetration of roots of marigold seedlings into the mat. Under high moisture stress, root tips were killed at the cell drainage hole; however, under low moisture stress the roots formed a mat on top of these mat covers. To prevent root penetration out the drainage hole, polyester and porous plastic were glued over the hole. No difference in shoot growth was observed between the control (only polyester mat cover) and seedlings produced in drainage hole covered cells. Total root growth of plug seedlings with drainage hole covered were greater than the control. Ten days after transplanting, seedlings that had been produced in plugs, with covered drainage holes, were larger.

Free access

Michele Krucker, Rita L. Hummel, and Craig Cogger

their efficacy as substrates for subirrigated crops. This project compares a range of locally available peat substitutes for greenhouse production of chrysanthemum fertilized at two N rates using conventional overhead irrigation and a capillary mat

Free access

Marc W. van Iersel and Krishna S. Nemali

We examined the effectiveness of an elevated capillary mat system to maintain constant and different moisture levels in the growing medium and verify the potential of drought stress conditioning in producing small and compact bedding plants. To differentiate between plant height and compactness, we determined compactness as the leaf area or dry mass per unit stem length. Marigold `Queen Sophia' (Tagetes erecta L.) seedlings were grown in square, 9-cm-wide, 10-cm-high containers filled with a soilless growing medium. A capillary mat was laid on top of a greenhouse bench which was raised by 15 cm on one side compared to the other side to create an elevation effect. Seedlings were subirrigated by immersing the low end of the capillary mat in a reservoir of water. The amount of water moving to the higher end of the mat progressively decreased with elevation. The moisture content in the growing medium averaged from 26 to 294 mL/pot at different elevations. Regression analysis indicated that growth parameters including, shoot dry mass, leaf area, leaf number, and plant height decreased linearly with decreasing soil moisture content in the growing medium. Of all the measured growth parameters, plant height was found to be least sensitive to decreasing moisture content in the growing medium. Plants in high moisture treatments had more dry mass and leaf area per unit length of the stem compared to those in low moisture treatments. Our results indicate that drought stress can produce small, but not truly compact bedding plants.

Full access

Jaime K. Morvant, John M. Dole, and Earl Allen

Pelargonium hortorum Bailey `Pinto Red' plants were grown with 220 mg·L−1 N (20N-4.4P-16.6K) using hand (HD), microtube (MT), ebb-and-flow (EF), and capillary mat (CM) irrigation systems. At harvest, root balls were sliced into three equal regions: top, middle, and bottom. A negative correlation existed between root medium electrical conductivity (EC) and N concentration to root number such that the best root growth was obtained with low medium EC and N concentrations. EF root numbers were greatest in the middle region. The two subirrigation systems (EF and CM) had higher average root numbers than the two surface-irrigation systems (HD and MT). For all irrigation systems, root numbers were lowest in the top region. In general, less difference in medium soluble salt and N concentrations existed between regions for surface-irrigated than for subirrigated root balls. Soluble salt concentration was lowest in the bottom and middle regions of EF and the bottom region of MT and CM. For subirrigation, the highest medium soluble salt and N concentration was in the top region. For all systems, pH was lowest in the bottom region. Plant growth for all irrigation systems was similar. EF and MT systems required the least water and EF resulted in the least runoff volume.

Free access

Jaime K. Morvant, John M. Dole, and Janet C. Cole

Pelargonium ×hortorum Bailey `Pinto Red' plants were fertilized with equal amounts of N, P, and K derived from: 1) 100% constant liquid fertilization (CLF); 2) 50% CLF plus 50% controlled-release fertilizer (CRF); or 3) 100% CRF per pot and irrigated using hand (HD), microtube (MT), ebb-and-flow (EF), or capillary mat (CM) irrigation systems. The treatment receiving 100% CRF produced greater total dry weights, and released lower concentrations of NO3-N, NH4-N, and PO4-P in the run-off than the 100% CLF treatment. The percentage of N lost as run-off was greatly reduced with the use of CRF. MT irrigation produced the greatest plant growth and HD irrigation produced the least. The EF system was the most water efficient, with only 4.7% of water lost as run-off. Combining the water-efficient EF system with the nutrient-efficient CRF produced the greatest percentage of N retained by plants and medium (90.7) and the lowest percentage of N lost in the run-off (1.7).

Full access

Jeff Million, Tom Yeager, and Claudia Larsen

rate driven directly by the plant's need, i.e., ET. Constant supply irrigation systems such as capillary mat and capillary wick (WCK) irrigation have the potential to optimize plant growth and crop uniformity while maximizing irrigation efficiency