Search Results

You are looking at 1 - 10 of 49 items for :

  • "calcium uptake" x
  • All content x
Clear All
Free access

Lynette von Allmen and Tamara Thomsen

Seedling of “Cortland” and “Idared” apples (Malus domestica) were grown in hydroponics and the shoots and roots were evaluated for percent concentration of calcium. “Cortland” is reported to be efficient in calcium uptake in comparison to “Idared”, reputed to be less efficient in calcium uptake and utilization. The seedlings were grown in hydroponic solutions containing calcium ranging from 0.5 ppm to 3.0 ppm concentrations. The shoots and the roots of the seedlings were analyzed for calcium content after 45 days. “Idared” seedling roots and shoots had higher calcium content at 0.5 ppm. However, at 1.5 ppm and at 3.0 ppm “Cortland” seedlings appear to be more efficient at calcium uptake. Early screening may be a useful tool in helping apple breeders select future cultivars that are more efficient at calcium uptake

Free access

Stephane Roy, William S. Conway, Alley E. Watada, Carl E. Sams, William P. Wergin, and Stephane Roy

Increasing the calcium content of apples with postharvest CaCl2, treatment has a beneficial effect on physiological and pathological storage problems. The optimal time after harvest during which the fruit can be successfully treated has not been investisated. This study examined the relationship between calcium uptake and the changes in surface cracking in the epicuticular wax of the fruit after various storage intervals. Apples were pressure infiltrated with 0, 2, or 4% CaCl, solutions at harvest or four or six months after storage at 0 C. Examination of the epicuticular wax with low temperature scanning electron microscopy revealed that as the storage duration increased, the numerous cracks on the fruit surface became deeper and wider, until, after six months storage, the cracking extended through the thickness of the cuticle. Calcium uptake in fruit pressure infiltrated with the CaCl2 solutions after six months storage was greater than fruit treated at previous storage intervals. As storage duration increased, epicuticular wax cracks became deeper and calcium uptake increased.

Free access

S. Roy, W.S. Conway, A.E. Watada, C.E. Sams, Eric F. Erbe, and W.P. Wergin

Prestorage heat treatment of apples has been shown to have a positive effect on fruit quality in storage. Postharvest treatment of apples with CaCl2 also beneficially affected fruit during storage. However, calcium uptake seems limited in heat-treated apples which indicates that the surface of the fruit may have been affected by the heat treatment. This study examined the effect of heat treatment on the subsequent uptake of CaCl2 solutions and related this process to the ultrastructure of the epicuticular wax surface of the fruit. Apples were pressure infiltrated with a 4% CaCl2 solution either without heat treatment or following 4 days at 38°C. Examination of the apple surfaces with low temperature scanning electron microscopy revealed that heat treatment changed the pattern of epicuticular wax. The epicuticular wax of non heated fruit exhibited numerous deep surface cracks. The epicotictdar wax of heated fruit did not exhibit similar cracks. This apparent obstruction or elimination of deep cracks may limit the CaCl2, solutions from entering the fruit. The heated fruit contained significantly less calcium compared to the fruit that were pressure infiltrated with the CaCl2 solution but not heated. These results indicate that cracks on the fruit surface may be a” important pathway for the penetration of CaCl2 solutions.

Free access

Yunxia Qiu, Melvin S. Nishina, and Robert E. Paull

The uptake of Ca by `Sunset' papaya (Carica papaya L.) fruit and its role in ripening was studied. The highest mesocarp Ca uptake rate occurred in fruit that were <40 days postanthesis when fruit transpiration was probably highest. Ca uptake rate by the mesocarp was low, from 60 to 80 days postanthesis when fruit fresh and dry weight increased. Mesocarp Ca uptake rate increased again from 100 to 140 days postanthesis when fruit fresh weight growth rate declined and dry weight growth rate increased. Mesocarp Ca concentration did not significantly differ from the peduncle to the blossom end. although Ca was significantly higher in the outer than inner mesocarp at the fruit equator. Mesocarp Ca concentration fluctuated significantly throughout the year ranging from 68 to 204 μg·g-1 fresh weight (FW). Soil Ca application did not always increase fruit mesocarp Ca concentration, while K and N fertilization decreased mesocarp Ca concentration. Attempts to increase mesocarp Ca concentration by spraying CaCl2 onto papaya fruit during growth and by postharvest vacuum infiltration and dipping of the cut peduncle into CaCl2 were unsuccessful. Mesocarp Ca concentration was positively correlated to the firmness of ripe papaya fruit and the rate of softening of mesocarp plugs. Less correlation was found between fruit firmness and the ratio of Ca concentration to K or Mg concentration, or to Mg plus K concentrations. Mesocarp Ca concentration of 130 μg·g-1 FW or above was associated with slower fruit softening rate than fruit with a lower concentration.

Free access

Kirk W. Pomper and Michael A. Grusak

Understanding the mechanisms that regulate xylem transport of calcium (Ca) to snap bean (Phaseolus vulgaris L.) pods could allow approaches to increase pod Ca concentration and enhance the nutritional value of edible pods. Using the snap bean cultivars Hystyle and Labrador, which exhibit high and low pod Ca levels, respectively, we wished to determine whether there were differences between the two cultivars in stem xylem-sap Ca concentration and whether any differences in sap Ca concentration were related to differences in whole-plant water uptake or Ca import between the cultivars. Well-watered greenhouse-grown plants were placed in a growth chamber at a constant light intensity for an equilibration period. Pot weight loss was measured to determine whole-plant water use and stem xylem exudate was subsequently collected from the severed base of the shoot at flowering and at two stages of pod development. `Hystyle' displayed an exudate Ca concentration that was 50% higher than `Labrador' during pod development. `Labrador' showed 35% greater total water transport through the stem than `Hystyle'. `Labrador' plants also showed a significantly larger leaf area than `Hystyle' plants. Additional plants were used to determine total, long-term Ca influx. No difference was observed between cultivars in total Ca influx into the aerial portion of the plant. With whole-shoot Ca influx being equivalent and pod transpiration rate identical in the two cultivars, our results suggest that the higher whole-plant water uptake in `Labrador' led to a dilution of Ca concentration in the xylem stream and thus less total Ca was transported to developing pods, relative to that in `Hystyle'. Increased transpiration efficiency, enhanced root uptake of Ca, or reduced Ca sequestration in the xylem pathway of the stem could lead to an enhancement in pod Ca concentration in future cultivars of snap bean.

Free access

W.F. Campbell, J.L. Anderson, and D.R. Walker

Calcium chloride (CaCl2) enhances turgidity and quality of postharvest sour cherry, Prunus cerasus L., fruit. Mechanisms by which plasma membrane (PM) ATPase maintains the electrochemical gradient in cell turgor were studied in isolated PM vesicles isolated from tapwater-, CaCl2- and chelated amino acid-calcium-treated Montmorency sour cherry fruit. Electron microscopy and periodic-chromicphosphotungstic acid staining indicated 85-90% closed PM vesicles. Protein activity associated with the PM was four times higher in both Ca treatments than in untreated cherries. ATPase activity was insensitive to NO3 and NaN3, but inhibited by vanadate, indicating absence or low levels of tonoplast and mitochondrial ATPases. PM vesicles exhibited a pH jump in the presence of acridine orange (A493-530nm). Cherry fruit appeared to have a PM ATPase similar to that of other plant species. Generation of a positive membrane potential across the PM was dependent upon ATP.

Free access

Jon R. Johnson

`Vates' is more susceptible to tipburn than `Blue Max' or `Heavi Crop' when grown under high temperature conditions. Nutrient solution culture studies were conducted to determine the influence of cultivar and Ca level in the nutrient solution on Ca uptake and distribution in the plant and to determine the physiological basis for differences in cultivar susceptibility to tipburn. Ca levels in the nutrient solution were 1 and 4,5 mM. Studies were conducted in the greenhouse at 32C during the day and 21C at night. Collard plants were 3 weeks old when the study was initiated. Cultivar and Ca level had no influence on Ca uptake during the first two weeks of the study. Ca uptake by `Blue Max' was greater than by `Vates' or `Heavi Crop' during the 3rd, 4th and 5th weeks of the study. Ca uptake for `Blue Max' was 73 ppm/week whereas for `Vates' and `Heavi Crop' it was 55 and 46 ppm/week, respectively during the 5th week of the study. Increasing the Ca level increased the Ca content of young leaves more for `Blue Max' than for `Vates' or `Heavi Crop'. Ca content of the petiole and stem was higher for `Blue Max' than for `Vates' or `Heavi Crop'. The influence of cultivar and nutrient solution Ca level on uptake and distribution of other nutrients will be discussed.

Free access

Stéphane Roy, William S. Conway, Alley E. Watada, Carl E. Sams, Eric F. Erbe, and William P. Wergin

`Golden Delicious' apples (Malus domestica Borkh) were pressure-infiltrated at harvest with a 4% CaCl2 solution either without prior heat treatment or following 4 days at 38C. Examination of the apple surfaces from both treatments by low-temperature scanning electron microscopy revealed that heat treatment changed the pattern of epicuticular wax. The epicuticular wax of nonheated fruit exhibited numerous deep surface cracks that formed an interconnected network on the fruit surface. The epicuticular wax of heat-treated fruit did not exhibit a similar network of deep cracks. This apparent obstruction or elimination of deep cracks may limit the CaCl2 solutions from entering the fruit. The heated fruit contained significantly less Ca than the fruit that were pressure-infiltrated with CaCl2 solutions but not heated. These results indicate that cracks on the fruit surface may be an important pathway for the penetration of CaCl2 solutions.

Free access

Stephane Roy, William S. Conway, Alley E. Watada, Carl E. Sams, Eric F. Erbe, and William P. Wergin

Structural changes in the cuticle could be partially responsible for the differences in uptake of infiltrated Ca in apple fruit. We examined the relationship between the surface structure of epicuticular wax of `Golden Delicious' apple and Ca uptake by the fruit. Apples were nontreated or pressure infiltrated with distilled water, or with 0.14 or 0.27 mol·L-1 CaCl2 solutions 2 weeks before optimum harvest time, at optimum harvest, or after 2, 4, or 6 months of storage at 0 °C. Examination of the fruit surface with low-temperature scanning electron microscopy revealed that cracks in the epicuticular wax became wider and deeper as storage duration increased. After 6 months of storage, the cracks extended through the cuticle. Uptake of Ca by the infiltrated fruit was greater after 6 months of storage than after shorter storage intervals. These data indicate that as storage duration increased, epicuticular wax cracks became deeper and Ca uptake by the fruit increased.

Free access

Stéphane Roy, William S. Conway, J. George Buta, Alley E. Watada, Carl E. Sams, and William P. Wergin

`Golden Delicious' apples (Malus domestica Borkh) were dipped in either distilled water, methylene chloride, or one of the following surfactants: Brij 30, Tween 20, Tween 80, Tergitol 15-S-9, and Triton X-100. The fruit then were pressure-infiltrated with a 2% solution of CaCl2. Following 4 months storage at 0 °C, fruit were removed and flesh Ca concentration analyzed. The fruit surface was observed using low-temperature scanning electron microscopy, and fruit were rated for surface injury. Brij 30 altered the epicuticular wax the least and resulted in the smallest increase in flesh Ca concentration and the softest fruit. Triton X-100 altered the epicuticular wax the most and resulted in the highest fruit flesh Ca concentration and firmest of the surfactant-pretreated fruit. Methylene chloride removed some of the epicuticular wax, and fruit pretreated with this solvent had the highest flesh Ca concentration and greatest firmness. However, all of the fruit treated with methylene chloride were severely injured.