Interactions of ethephon and irradiance reduction were investigated in terms of flower bud blasting in Easter lily (Lilium longiflorum Thunb. `Nellie White'). Silver thiosulfate (STS) was investigated as an inhibitor of ethylene-induced bud abortion. Fourteen days of 92% irradiance reduction significantly increased bud abortion when plants were exposed to 2.1 mm ethephon. Bud abortion was 39% and 60% for plants grown in ambient and reduced irradiance, respectively. Silver thiosulfate was applied to plants 2 or 3 weeks after the date of the first visible bud, followed by ethephon treatment 2 days later. Bud abortion was significantly reduced by 1 or 2 mm STS, without phytotoxicity. Pretreatment with 1 or 2 mm STS as early as 4 weeks before ethephon exposure significantly reduced ethephon-induced bud abortion. Silver thiosulfate application could inexpensively reduce flower bud abortion during latter stages of greenhouse forcing of Easter lilies.
The effects of the duration of cold storage, as well as the concentration, timing, and means of application of a solution containing 25 mg·L-1 each of benzyladenine (BA) and gibberellins (GA4+7) on the postharvest quality of cut Asiatic and Oriental lilies (Lilium sp.) were evaluated. Depending on the cultivar, lower leaves began to turn yellow between 1 and 2 weeks after placing non-cold-stored stems in a 20 °C room illuminated 12 h·d-1 with 8 μmol·m-2·s-1 from cool-white fluorescent lamps. Leaf yellowing continued to progress upward until the end of the vase life. Cold storage (3.3 °C) worsened the leaf disorder, particularly, on the Oriental lily `Stargazer'. The longer the duration of cold storage, the earlier the development of leaf yellowing and the higher the percentage of leaves that were chlorotic. In addition, cold storage induced bud blasting, inhibited flowers from fully opening, and reduced the longevity and fresh weight of open flowers and the vase life of cut stems. Spraying leaves with a solution containing 25 mg·L-1 each of BA and GA4+7 significantly reduced cold-storage-induced leaf yellowing, bud blasting, and vase life of three of the four cultivars tested. The development of leaf yellowing declined with increasing concentration of BA+GA4+7. The susceptibility of `Stargazer' to cold-storage-induced leaf yellowing and bud blasting can be counteracted by a concentration of growth regulators higher than that which was effective for the other cultivars. Timing of the BA+GA4+7 application was not critical, as there were no differences in leaf yellowing or bud development when the solution was sprayed before or after the cold storage. Addition of BA+GA4+7 (0.5 or 2.5 mg·L-1 of each) to the preservative solution or a pulsed treatment in solutions containing 25 mg·L-1 each of BA and GA4+7 for 4 hours prevented leaf yellowing, but increased bud blasting. For practical applications, growth regulators can be sprayed prior to or after cold storage in order to improve the postharvest leaf and flower quality of cut lilies.
Individual 'Stargazer' flowers lasted about 4.5 to 5 days and weighed ≈14 g. Addition of 2% sugar into the vase solution neither affected the longevity nor the size of the flowers but significantly enhanced anthocyanin content and, thus, the intensity of petal color. Defoliation of Oriental lilies, the common practice of retail florists, did not affect the opening, longevity, and size of the open flowers, but did result in lighter-color petals when placed in a solution without sugar. Addition of sugar to the vase solution counteracted the adverse effects of defoliation on petal color. Sugar in the vase solution did not overcome the increased bud blasting and the reduced longevity and size of flowers induced by cold storage. However, it enabled more flowers to open fully, which, without sugar, remained only partially open. Excised bud experiments revealed that bud size of 6.1 cm and 7.0 cm were critical for opening of non-cold-stored and cold-stored buds, respectively. Unlike other cut flower species in which flowers for long-term storage or long-distance transport are harvested at a tighter-bud stage than those intended for the local market, in 'Stargazer', harvesting of stems where the smallest bud is >7.0 cm would be critical in reducing cold-storage-induced bud blasting.
necrosis, a storage disease of tulips. III. The influence of ethylene and mites Neth. J. Plant Pathol. 78 168 178 De Munk, W.J. 1973 Flower-bud blasting in tulips caused by ethylene Neth. J. Pl. Path 79 41 53
-h pulse at 25 mg·L −1 controlled leaf chlorosis of cut oriental and asiatic lilies. However, continuous application enhanced bud blasting ( Han, 2001 ). Similarly, mode and time of application of PGR also affected leaf chlorosis of lilies and
. 2009 MAPK cascade signalling networks in plant defence Curr. Opin. Plant Biol. 12 421 426 Qiu, W. Xu, F. Xie, G. Xu, L. Huai, Y. Li, B. Yu, S. Qian, J. 2008 Identification of Pseudomonas syringae pv. syringae causing pear blossom and bud blast in