Search Results

You are looking at 1 - 10 of 18 items for :

  • "bottom ash" x
  • Refine by Access: All x
Clear All
Free access

Dharmalingam S. Pitchay, Mark D. Sherratt, and Bradford C. Bearce

Dormant budded plants of Hydrangea macrophylla (Thunb.) cvs. Blaumeise Blue and Pink were planted on 29 Jan. 1996 in 15-cm azaleas pots containing media with topsoil, peat, perlite, coal bottom ash, and mine soil, mixed in varying proportions. Media pH levels were initially adjusted with dolomitic limestone to a range of 6.0 to 6.1 for pink inflorescences and with ammonium sulfate to a range of 4.4 to 5.9 for blue inflorescences. Plants of Blaumeise Blue and Blaumeise Pink in low pH media were drenched on 29 Feb. with a solution of aluminum sulfate at 6 g·L–1. Number of shoots per plant were reduced in media with the highest proportion of coal bottom ash (40%, v/v) plus 30% mine soil. Plant diameter was affected very little by type of media. Tallest plants were `Blaumeise Pink' growing in media containing at least 20% top soil or mine soil plus 20% coal bottom ash. These mixes also contained 20% or 40% perlite. Inflorescence diameters ranged from 10.88 to 17.43 cm. and were mostly unaffected by media type. Inflorescence number per plant appeared to be reduced in `Blaumeise Blue' regardless of media. Inflorescence color brightness ranged from L = 55.26 to 61.38 and was affected very little by media type in both cultivars. Bluest inflorescences occurred on `Blaumeise Blue' plants growing in a combination of zero top soil, 40% peat, 30% perlite, 20% coal bottom ash, and 10% mine soil with no lime, and`Blaumeise Pink' plants growing in media with zero topsoil, 40% peat, and 20% mine soil. Blue color did not develop well in media containing top soil and no mine soil. This study demonstrated that florists' hydrangea can be satisfactorily forced in media containing substantial amounts of coal bottom ash and mine soil and that color regulation is also possible in some of these media.

Free access

Bradford C. Bearce and Lenka Smuta

Easter lilies (Lilium longiflorum Thunb. `Nellie White') were forced in root media composed of 1 peat: 1 vermiculite (v/v) mixed with coal bottom ash (CBA) at rates of 0%, 25%, 50%, 75%, or 100% CBA. Lilies in all levels of CBA were equal in mean per plant flower bud numbers, fresh and dry weights, and numbers of yellow or brown lower stem leaves. Lilies in 100% CBA were significantly lower in mean stem length than plants in 0% or 50% CBA. Plants in 100% CBA required more frequent irrigation than plants in all other media. Media pH and solution electrical conductivity increased with increase in percent CBA. Analysis of leaf tissue showed no difference in nutrient levels between plants in 0% or 100% CBA.

Free access

Dharmalingam S. Pitchay and B.C. Bearce

Petunia and impatiens seedlings were planted in cell packs containing 0%, 25%, or 50% (by volume) coal bottom ash (CBA) mixed with peat: vermiculite. High soluble salts caused fresh and dry weights to be greatly reduced in 25% and 50% CBA. This was thought to be due to insufficient drainage in the shallow cell packs. Subsequent crops were grown in 4-inch pots. Double Pink impatiens in 4-inch pots showed no significant difference between control and ash media in the number of buds and flowers, plant heights and diameters, and fresh and dry weights. For `Mixed Shady Lady' impatiens, the number of flowers, and fresh and dry weights were greater in the control and 50% CBA. Plant heights were reduced in 25% and 50% CBA media. There were no differences in plant diameters among the media. Ivy geraniums showed no significant difference in the number of days from planting to first bloom and 50% florets opening; number of florets, buds, and inflorescences; and stem lengths. Shoot numbers were reduced in 25% and 50% CBA. There was also no significant difference in number of days from planting to first bloom and 50% florets opening, or number of buds and inflorescences for zonal geraniums. Number of florets increased for zonal geraniums in 25% CBA.

Free access

Mark D. Sherratt, Donna V. Coffindaffer-Ballard, and Bradford C. Bearce

Four poinsettia cultivars were planted in root media containing 0%, 25%, or 50% (by volume) of coal bottom ash or aged hardwood sawdust. Bract color development in `Supjibi' was delayed in media containing sawdust or ash by up to 8–12 days. Bract color initiation of `Jingle Bells' and `Success' occurred earliest in media containing 25% sawdust, but color development was delayed in 50% coal ash. Color development in `Dark Red Hegg' was not affected by ash or sawdust. Analysis of combined leaves from all four cultivars showed Fe levels below normal where media contained sawdust. Leaf Mo concentrations increased with increased media sawdust to above the normal range, but Mn levels were below the normal range in sawdust media. Leaf Ca levels were below normal in all media, possibly due to excessively high K levels in media and leaves. When fertilizer concentration and frequency were adjusted to media EC levels, control media (0% ash or sawdust) required 100 ppm N once a week. Media containing sawdust required 300 ppm to maintain EC levels between 1.25–2.25 dS·m–1 and coal ash media were irrigated with water following the sixth week after planting due to EC levels >2.25.

Free access

Dharmalingam S. Pitchay and Bradford C. Bearce

Rooting performance was evaluated for three different hydrangea (Hydrangea macrophylla Thunb. `Blaumeise Lace Cap') cutting types in propagation media containing peat:sand amended with 0%, 25%, 50%, and 100% coal bottom ash (CBA) sieved through 2-mm mesh. Electrical conductivity (EC) values of all media were in acceptably low ranges, whereas pH was suboptimal in all but 100% CBA, ranging from 3.8 to 4.6 vs. 6.0 to 6.75 for 100% CBA. Available Ca was significantly higher at up to 189 mg·kg–1 in the 100% CBA. Rooted cuttings were analyzed for root counts and dry mass. Terminal tip cuttings produced 96.1 mean roots/stem compared to butterfly cuttings (76.4) and single-eye cuttings (60.7), and there was no significant difference in root dry mass among the different cutting types. Propagation media containing 50% CBA produced greater numbers of roots/stem (99.89 and 89.59, respectively). The dry mass of roots/stem was significantly higher in media with 100% CBA. Root numbers per cutting were higher in terminal tip cuttings grown in 50% and 100% CBA and butterfly cuttings in 50% CBA. On the other hand, dry mass per cutting was higher in 100% CBA as compared to the rest, except for the terminal tip and butterfly cuttings in 50% CBA. The higher pH and Ca concentration may be factors causing the better rooting performance in 100% CBA.

Free access

James Gibson and Bradford C. Bearce

Poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) cultivars `Dynasty Red', Nutcracker Pink', and `Annette Hegg Topwhite' were planted in 15-cm azalea pots containing peat: vermiculite (1:1, v:v) in which coal bottom ash sieved through 6-mm mesh was mixed in proportions of 0%, 25%, or 50% by volume. Planting date was 23 July 1996, and pinch date was 25 Aug. Harvest date at anthesis was 16 Dec. Plant heights of all cultivars were increased in the ash media. L, a, and b, values measured with a Minolta CR-200 chroma meter differed very slightly among ash levels within cultivars. Mean per plant bract cluster count was very similar among ash levels and cultivars. Mean diameter of largest bract cluster was increased above that of 0% coal ash plants for `Topwhite' plants in 50% coal ash media. Mean per plant dry weights of all three cultivars were increased over those of control plants in both 25% and 50% coal ash media. Media pH increased with increase in ash, while EC tended to decrease. Media available Ca increased with ash increase, while Mg decreased and the same pattern was noted for leaf tissue Ca and Mg. This was probably due to release of Ca from the ash, which contains about 10% Ca oxides. Tissue levels of Ca and Mg were within acceptable ranges; however, K levels also declined in plant tissue to suboptimal levels with plants in ash media.

Free access

M.A. Woodard, B.C. Bearce, S. Cluskey, and E.C. Townsend

`Inca Yellow' marigolds (Tagetes erects L.) were planted in polyethylene bags containing coal bottom ash (CBA), pine wood peelings (PWP), a mixture of 1 CBA: 1 PWP (v/v), and loose Grodan rockwool (RW) and grown in a circulating nutriculture system. Three fertigation frequencies of 12, 6, or 4 cycles per 12-hour light period were set with a duration of 5 minutes each. Flower diameters of marigolds grown in CBA, PWP, and CBA-PWP exceeded flower diameters of RW-grown marigolds, and days from planting to harvest were less in CBA and CBA-PWP than in the other two media. There was no interaction between medium and fertigation frequency. Foliar analysis showed no significant differences in plant elemental composition among root media or fertigation frequencies. Postharvest PWP water extracts contained higher P levels than extracts of other media, and CBA-PWP water extracts contained higher K, Ca, and Mg. In the CBA-PWP mixture, decomposition products from PWP may have increased P volubility and solubilized the K, Ca,-and Mg-in CBA.

Free access

M.A. Woodard, B.C. Bearce, and E.C. Townsend

A recycling nutriculture system was redesigned to improve growth and flowering of Tagetes erecta L., cv., Inca Yellow in four media; loose rockwool (RW), coal bottom ash (CBA), pinewood peelings (PWP) and CBA:PWP (1:1, v/v). Three nutricycle frequencies of 12, 6 and 4 per 12 hour light period were set with a nutricycle duration of 5 minutes. Volume, height and fresh and dry weights of marigolds in CBA, PWP and CBA: PWP were comparable to that of marigolds in RW. Flower diameters of plants in CBA, PWP and CBA:PWP were increased and days to harvest decreased compared to plants in RW. Plants in CBA: PWP increased in fresh weight compared to CBA or PWP plants. No interaction occurred between media and nutricycle frequency at 12 or 4 cycles per 12 hours; however a malfunctioning timer caused prolonged flooding of plant root zones at the 6 cycle setting. This resulted in decreased plant volume and fresh and dry weights at this frequency. These results show that growth and flowering of marigolds in CBA and PWP comparable with that in RW can be achieved with more than 1 nutricycle frequency.

Free access

Susan H. Butler and Bradford Bearce

Rosa × hybrida 'Samantha' plants were planted in pots of three soilless and two soil-containing media. Soilless media consisted of coal bottom ash and composted hardwood bark in 1:1, 2:1, and 3:1 ratios. Soil-containing media were equal parts soil, peat, and coal bottom ash; and a control of equal parts soil, peat, and sand. Half the pots of each media were treated with a cover crop of Hordeum vulgare L. 'Barsoy' to simulate weathering and incorporate additional organic matter prior to planting the roses. Physical and chemical properties of all five original media were examined, and production indices of two harvests were measured; including stem length, flower bud diameter, fresh weight, days to harvest and average number of blooms per plant. Results to date indicate satisfactory growth in all treatments. The three soilless treatments have produced more stems with larger flower bud diameters and shorter days-to-harvest than the soil-containing treatments. However, the fertilization, and electrical conductivity of all treatments remains below normal. Moisture retention data also show the soil-containing treatments to have higher container capacity and easily available water. Cover-cropped plants also had shorter days-to-harvest, but in one of two harvests produced flower buds of smaller diameter.

Free access

Susan S. Myers and Bradford Bearce

Rooted cuttings of Euphorbia pulcherrima 'Brilliant Diamond' were planted on July 27, 1992, in 15 cm standard pots containing peat:vermiculite (1:1, v/v) mixed with coal bottom ash (CBA) at 0, 25, 50, 75 and 100 percent of volume. Lime sufficient to adjust pH to an entitled range-of 5.6-6.8 was added to each medium. A 1500 mg/liter Cycocel spray was applied weekly to all plants from August 25 (pinch date) until Sept 28.) Irrigation and fertilization frequencies were recorded. At anthesis (Nov 17). plants were measured and harvested. The 100 percent CBA medium required less irrigation but more fertilization than the 0 percent CBA medium. Heights of plants in the 50, 75 and 100 percent CBA media were less than those in the 0 percent CBA medium. Bract diameters and dry weights of the 100 percent CBA plants were less than those of the 0 percent CBA plants. A quality rating placed the 75 and 100 percent CBA plants below plants in 0, 25, and 50 percent CBA. A yellowing of top leaves occurred beginning in early November and was more noticeable with increase in percent CBA.