Search Results

You are looking at 1 - 10 of 14 items for :

  • "blanket flower" x
Clear All
Full access

Nicholas J. Flax, Christopher J. Currey, James A. Schrader, David Grewell and William R. Graves

seedlings of ‘Arizona Sun’ blanket flower grown by a commercial seedling producer were transplanted into containers; seedlings were brought with containers to each facility. Data loggers (Watchdog Plant Growth Station model 2475; Spectrum Technologies

Free access

Jeffrey F. Derr

The tolerance of transplanted lanceleaf coreopsis (Coreopsis lanceolata L.), ox-eye daisy (Chrysanthemum leucantheum L.), purple cone flower [Echinacea purpurea (L.) Moench.], and blanket flower (Gaillardia aristata Pursh) to metolachlor was determined in field trials. Metolachlor at 4.5 kg·ha-1 (maximum use rate) and 9.0 kg·ha-1 (twice the maximum use rate) did not reduce stand or flowering of any wildflower species after one or two applications, although plants developed transient visible injury. Combining metolachlor with the broadleaf herbicides simazine or isoxaben resulted in unacceptable injury and stand reduction, especially in ox-eye daisy. Metolachlor plus oxadiazon was less injurious to the wildflowers than metolachlor plus either simazine or isoxaben. Treatments containing metolachlor controlled yellow nutsedge (Cyperus esculentus L.) by at least 89% in both experiments. Treatments containing isoxaben controlled eclipta (Eclipta alba L.). 100% in both studies. Chemical names used: N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide (isoxaben); 2-chloro -N-(2-ethyl-6-methylphenyl) -N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 3-[2,4-di-chloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3 H) -one (oxadiazon); 6-chloro -N,N' -diethyl-1,3,5-triazine-2,4-diamine (simazine).

Free access

Jeffrey F. Derr

Tolerance of transplanted black-eyed Susan (Rudbeckia hirta var. pulcherrima Farw.), lanceleaf coreopsis (Coreopsis lanceolata L.), shasta daisy (Chrysanthemum × superbum Bergmans ex. J. Ingram), purple coneflower [Echinacea purpurea (L.) Moench.], and blanket flower (Gaillardia aristata Pursh) to preemergence herbicides was evaluated in container trials. Herbicides were applied at the maximum use rate and twice the maximum use rate. Dithiopyr, pendimethalin, and prodiamine provided excellent control of spotted. spurge (Euphorbia maculata L.) and yellow woodsorrel (Oxalis stricta L.) with little injury to the five herbaceous perennials. DCPA, oxadiazon, and metolachlor were tolerated by all treated species, but these chemicals provided lower control of one or both weed species. Oryzalin, isoxaben + trifluralin, and napropamide caused unacceptable injury and shoot fresh-weight reductions in some of the perennials at one or both application rates. Chemical names used: dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate (DCPA); S,S-dimethyl 2-(difluoromethyl) -4-(2 -methylpropyl)-6-trifluoromethyl-3,5-pyridinedicarbothioate(dithiopyr);N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide(isoxaben); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide(metolachlor);N,N-diethyl-2-(l-naphtha1enenyloxy) propanamide(napropamide);4-(dipropylamino)-3,5-dinitrobenzenesulfonamide (oryzalin);3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethy1)-l,3,4-oxadiazol-2-(3H)-one (oxadiazon); N-(1-ethylpropyl) -3,4-dimethyl-2,6-dinitrobenzamine (pendimethalin); N,N-di-n-propyl-2,4-dinitro-6-(trifluoromethyl)-m-phenylenediamine (prodiamine); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzamine (trifluralin).

Free access

Mei Yuan, William H. Carlson, Royal D. Heins and Arthur C. Cameron

Scheduling crops to flower on specific dates requires a knowledge of the relationship between temperature and time to flower. Our objective was to quantify the effect of temperature on time to flower and plant appearance of four herbaceous perennials. Field-grown, bare-root Coreopsis grandiflora (Hogg ex Sweet.) `Sunray', Gaillardia ×grandiflora (Van Houtte) `Goblin', and Rudbeckia fulgida (Ait.) `Goldsturm', and tissue culture—propagated Leucanthemum ×superbum (Bergman ex J. Ingram) `Snowcap' plants were exposed to 5 °C for 10 weeks and then grown in greenhouse sections set at 15, 18, 21, 24, or 27 °C under 4-hour night-interruption lighting until plants reached anthesis. Days to visible bud (VB), days to anthesis (FLW), and days from VB to FLW decreased as temperature increased. The rate of progress toward FLW increased linearly with temperature, and base temperatures and degree-days of each developmental stage were calculated. For Coreopsis, Leucanthemum, and Rudbeckia, flower size, flower-bud number, and plant height decreased as temperature increased from 15 to 26 °C.

Full access

Kimberly A. Moore, Amy L. Shober, Gitta Hasing, Christine Wiese and Nancy G. West

). Herbaceous perennial plant species included blanket flower, goldenrod, mondo grass ( Ophiopogon japonicus ), and ‘Mystic Spires’ salvia. Annual species were received as plugs from Knox Nursery (Winter Garden, FL), with the exception of impatiens, wax begonia

Full access

Jeffery K. Iles and Nancy H. Agnew

The capacity of plant materials to resume normal growth after exposure to low temperature is the ultimate criterion of cold hardiness. We therefore determined the low-temperature tolerance of five commercially important herbaceous perennial species. Container-grown blanket flower (Gaillardia ×grandiflora Van Houtte. `Goblin'), false dragonhead [Physoste- gia virginiana (L.) Benth. `Summer Snow'], perennial salvia (Salvia ×superba Stapf. `Stratford Blue'), painted daisy (Tanacetum coccineum Willd. `Robinson's Mix'), and creeping veronica (Veronica repens Loisel.) were subjected to 0, -2, 4, -6, -8, -10, -12, -14, -16, and -18C in a programmable freezer. The percentage of survival of most species was adequate when exposed to -10C. Producers of container-grown perennials are advised to provide winter protection measures that prohibit root medium temperatures from falling below -10C.

Free access

Daniel D. Beran, Roch E. Gaussoin and Robert A. Masters

Native wildflowers are important components of grassland communities and low-maintenance wildflower seed mixtures. Weed interference limits successful establishment of native wildflowers from seed. Experiments were conducted to determine the influence of the imidazolinone herbicides imazethapyr, imazapic, and imazaquin on the establishment of blackeyed susan (Rudbeckia hirta L.), upright prairieconeflower [Ratibida columnifera (Nutt) Woot. and Standl.], spiked liatris [Liatris spicata (L.) Willd.], blanket flower (Gaillardia aristata Pursh.), purple coneflower [Echinacea purpurea (L.) Moench.], and spotted beebalm (Monarda punctata L.). Wildflower response to the herbicide treatments was variable and appeared to be influenced by the level of weed interference. Establishment of the native wildflowers after application of imazethapyr or imazapic at 70 g·ha-1 a.i. was generally improved at sites with greater weed interference. Emergence and density of wildflowers was often reduced by imazapic in sites with low weed interference. Flower density during the second growing season was usually either improved or not reduced by either imazethapyr or imazapic. Based on these findings, imazethapyr and imazapic can reduce weed interference and improve the establishment of some native wildflowers in areas with high weed infestations. Chemical names used: (±) -2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (imazapic); 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid (imazaquin); 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid (imazethapyr).

Full access

Amir Rezazadeh, Richard L. Harkess and Guihong Bi

blanket flower [ Gaillardia aristata ( Latimer and Freeborn, 2010 )]. Dikegulac sodium at 800 or 1600 ppm increased branch number of pruned and unpruned ‘Limelight’ panicle hydrangea [ Hydrangea paniculata ( Cochran et al., 2013 )]. The foliar

Full access

Kimberly A. Moore, Amy L. Shober, Gitta S. Hasing, Christine L. Wiese, Geoffrey C. Denny and Gary W. Knox

to nitrogen (N) fertilizer rate for landscape-grown plants in west-central Florida (U.S. Department of Agriculture hardiness zone 9b). Three herbaceous perennials [blanket flower ( Gaillardia pulchella ), goldenrod ( Solidago chapmanii ), and mondo

Full access

Amber N. Bates, Gerald M. Henry and Cynthia B. McKenney

lanceolata ), ox-eye daisy ( Chrysanthemum leucantheum ), blanket flower ( Gaillardia aristata ), and purple coneflower ( Echinacea purpurea ) in response to metolachlor at 4.5 and 9.0 kg·ha −1 . Phytotoxicity ≥13% was observed for trifluralin + isoxaben