Search Results

You are looking at 1 - 10 of 39 items for :

  • "black cherry" x
  • Refine by Access: All x
Clear All
Free access

Suzanne L. Downey and Amy F. Iezzoni

Black cherry (Prunus serotina Ehrh.) is a common secondary forest species with a wide endemic distribution ranging from Nova Scotia south into Mexico, Ecuador, and Peru. Although planted in the United States for its valued lumber, black cherry is essentially a wild species with small fruit ≈6 to 10 mm in diameter. In contrast, in Mexico and Ecuador, domesticates of this species called Capulin, have much larger (2 to 2.5 cm in diameter) edible fruit. To date, no studies of the genetic diversity within North American black cherry or the ancestral origin of the Capulin types have been conducted. Simple sequence repeats (SSRs, also termed microsatellites) would be the marker of choice for such genetic diversity studies due to their hypervariability; however, generation of these sequence-based markers is expensive. Therefore, our objective was to determine if markers already identified in other Prunus L. species would be informative in black cherry. The black cherry germplasm screened consisted of selections originating from Michigan, Mexico, and Ecuador. A chloroplast DNA marker, originally generated from sour cherry (P. cerasus L.), amplified three different sized products in black cherry. Four of the eight nuclear SSR markers tested from peach [P. persica L. Batsch (Peach Group)], sour cherry, and sweet cherry (P. avium L.) also amplified and identified polymorphic markers. Together these four primer pairs resolved 54 putative alleles for the 66 black cherry accessions assayed. Success of the sweet cherry, peach, and sour cherry primers in identification of polymorphic markers in black cherry indicates it should be possible to use these markers for comprehensive molecular genetic studies in black cherry.

Free access

Venu G. Oddiraju, Caula A. Beyl, Philip A. Barker, and Gary W. Stutte

Microcuttings of three western black cherry (Prunus serotina var. virens Ehrh.) phenotypes obtained from seedling trees with profuse or scant root systems were grown in two container sizes to examine the early effects of root constraint. Because manual methods to estimate root length and other characteristics are time consuming and subjective, an image analysis hardware and software system (image capture and analysis system) was used to classify and measure the roots. There was a significant effect of clone on fine-root surface area, coarse: fine root ratio, and root dry weight (P ≤ 0.05), but root characteristics (profuse or scant root development) of the parent material were absent in the vegetative propagules from these lines. Container size had no significant effect on coarse- or fine-root surface area but did reduce coarse: fine root ratio (P ≤ 0.05). A threshold effect of container size on root dry weight was detected (P ≤ 0.1).

Free access

Venu G. Oddiraju, Caula A. Beyl, and Philip A. Barker

Seedlings and microcuttings taken from two western black cherry (Prunus serotina var. virens Ehrh.) trees, one with profuse roots and one with scant roots, were grown in either normal or compacted soil to determine if the variation in the growth of fine and coarse roots under conditions of compaction could be attributed to genetic factors or method of propagation. An image processing system [Image Capture and Analysis System (ICAS)] was used to classify and measure the roots. There was a significant reduction in the surface area of fine roots, total surface area, and root dry weight after 12 weeks of compaction, but the effect on coarse roots was nonsignificant. Initial differences in the larger surface area of coarse roots of seedlings vs. for those of microcuttings disappeared over the course of the experiment. However, the surface areas of fine roots and the total surface area were significantly larger and root dry weight was higher for seedlings than for microcuttings, even at the end of the 12-week treatment period. The surface areas of fine and coarse roots, total surface area, and dry weight of roots were similar at the end of the experiment, regardless of genotype.

Free access

Marie C. Pairon and Anne-L. Jacquemart

Tetraploid black cherry (Prunus serotina) is the only Prunus L. species that has commercial importance as a timber tree in North America and is well known in Europe for its invasive behavior. Inheritance studies have never been performed and it is not known whether the species is allo or autotetraploid. Six microsatellite nuclear markers were used to test the inheritance in progenies of controlled crosses. Inheritance was proven to be disomic at all loci and a typical diploid mendelian inheritance was found at two loci. A first screening of a population in the invasive range showed high number of alleles per locus (ranging from 6 to 16) and high level of observed heterozygosity (0.75 to 1). Knowing that inheritance is disomic at six microsatellite loci and that at least two of them can be treated as codominant, diploid markers will be beneficial for future genetic studies.

Free access

Marie Pairon, Anne-Laure Jacquemart, and Daniel Potter

, PceGA34) were genome-specific ( Pairon and Jacquemart, 2005 ). The main goal of this study was to find additional genome-specific markers in black cherry by selecting conserved microsatellite markers and studying their inheritance patterns in progenies

Free access

Ana Carolina Espinosa, Paula M. Pijut, and Charles H. Michler

A complete regeneration protocol was developed for Prunus serotina Ehrh., an important hardwood species for timber and sawlog production in the central and eastern United States. Nodal sections were cultured on Murashige and Skoog (MS) medium supplemented with 4.44 μm 6-benzylaminopurine (BA), 0.49 μm indole-3-butyric acid (IBA), and 0.29 μm gibberellic acid (GA3). In vitro leaf explants of three genotypes were placed on woody plant medium (WPM) supplemented with 0, 2.27, 4.54, or 6.81 μm thidiazuron (TDZ) in combination with 0, 0.54, 1.07, or 5.37 μm naphthaleneacetic acid (NAA), and on WPM supplemented with 0, 4.44, 8.88, or 13.32 μm BA in combination with 0, 0.54, 1.07, or 5.37 μm NAA. Cultures were maintained either in continuous darkness for 5 weeks, or in the dark for 3 weeks and then transferred to a 16-hour photoperiod. TDZ and the genotype had a significant effect on the number of shoots regenerated. The maximum mean number of shoots regenerated per explant (5.05 ± 1.14) was obtained with 2.27 μm TDZ plus 0.54 μm NAA with the 3-week dark period then light treatment. The highest percent shoot regeneration (38.3) and mean number of shoots (4.13 ± 0.97) was obtained with 6.81 μm TDZ plus 1.07 μm NAA. The highest rooting (27%) of adventitious shoots and number of roots per shoot (2.3 ± 0.2) was obtained with 2.5 μm IBA when shoots were maintained for 7 days in the dark on rooting medium before transfer to a 16-hour photoperiod. The highest rooting (70%) of nodal explant-derived stock cultures and number of roots per shoot (2.7 ± 0.9) was also obtained with 2.5 μm IBA, but when shoots were maintained for 4 days in the dark before transfer to a 16-hour photoperiod. In total, 86% of the plantlets survived acclimatization to the greenhouse and 100% survival after overwintering in cold-storage.

Open access

Michael A. Schnelle

highly sought-after showy fruits borne from female plants, which are its greatest selling point. Black cherry Black cherry is native to the eastern United States ( Coastal Plains Plants Wiki, 2007 ), but it can be found as far west as Oklahoma and Texas

Full access

Gregory A. Lang

controls for cherry fruit fly. Thus far, only two-spotted spider mites have been more prevalent inside the tunnel than out, although black cherry aphids have been a problem inside and outside of the tunnels when synthetic pesticide use was curtailed. In

Open access

Jennifer K. Boldt and James E. Altland

accumulates and distributes Si. Materials and Methods Rooted liners of eight petunia cultivars [‘Supertunia Black Cherry’ (Black Cherry), ‘Supertunia Limoncello’ (Limoncello), ‘Supertunia Priscilla’ (Priscilla), ‘Supertunia Raspberry Blast’ (Raspberry Blast

Free access

Orville M. Lindstrom

The cold hardiness of seven deciduous hardwoods, red maple (Acer rubrum L.), white oak, (Quercus alba L.), green ash (Fraxinus pennsylvanica Marsh.), sweetgum (Liguidambar stryaciflua L.), sugar maple (Acer saccharum Marsh.), river birch (Betula nigra L.) and black cherry (Prunus serotina Ehrh.) were evaluated weekly during the fall, winter and spring for three consecutive years. All trees evaluated were established (20-40 years old) and locatd on the Georgia Station Griffin, GA. Each species developed a maximum cold hardiness of at least -30 C by mid-January or early February each season. Response to temperature fluctuations varied with species. Red maple, for example, lost less cold hardiness due to warm mid-winter temperatures than the other species tested, while white oak tended to respond more quickly to the temperature fluctuations. Data will be presented comparing the response of cold hardiness to mid-winter temperature fluctuations for each species for the three year period.