Search Results

You are looking at 1 - 2 of 2 items for :

  • "biodegradable aqueous foam" x
  • Refine by Access: All x
Clear All
Full access

Christopher Y. Choi, Werner Zimmt, and Gene Giacomelli

Aqueous foam was developed to serve as a barrier to conductive, convective, and radiative heat transfer. Through the use of a bulking agent, the physical properties of gelatin-based foam were more stable, adhesive, biodegradable, and long lasting. The phytotoxicity, possible environmental hazard and removal of the foam were also considered. Resistance to freezing-thawing, heating-evaporation, and wind were evaluated. Studies to determine the foam's long-term stability under field weather conditions were completed. The handling and performance characteristics of the foam necessary for development of this application were determined. Factors that affect the physical properties and the utilization of the foam were quantified. These included the proportions of the foam components, the mixing temperature of the prefoam solution, the application temperature, and the rate of foam generation. The newly developed foam might be ideal for freeze and frost protection in agriculture.

Full access

Christopher Y. Choi and Gene Giacomelli

Newly formulated aqueous foam was tested in the field. The foam demonstrated the longevity necessary for practical field use. Soil temperatures beneath an insulation layer of aqueous foam were measured to determine the effectiveness of foam as soil mulch. Leaf temperature within a canopy was monitored to observe the modification of plant leaf temperature, and to evaluate the phytotoxic effects of foam applied directly to the leaf canopy. Leaves were not damaged after being covered with the foam for two weeks. The foam-protected soil was effectively insulated, and the aqueous foam proved to be an effective radiation shield against the cold night sky. Temperature differences as high as 5 °C (9 °F) were measured between the foam-covered and uncovered copper metal plates, which were used to simulate plant leaves. The foam covered plates were ≈80% as effective as the aluminum foil covered plates in reducing radiation heat transfer.