Search Results

You are looking at 1 - 10 of 322 items for :

  • "berry weight" x
  • Refine by Access: All x
Clear All
Free access

Seth DeBolt, Renata Ristic, Patrick G. Iland, and Christopher M. Ford

frozen at –20 °C until required for analysis. Berry weights were determined from the 50-berry samples, which were subsequently crushed and used for the determination of total soluble solids (TSS expressed as °Brix) by refractometry. The organic acid

Full access

Bernadine C. Strik and Amanda J. Vance

honey bee activity and correspondingly the number of seeds/berry ( Tuell and Isaacs, 2010 ). Honey bee visitation rates were correlated with the number of seeds per berry (seeds/berry) and correspondingly with berry weight ( DeVetter et al., 2016

Free access

Bernadine Strik, Gil Buller, and Edward Hellman

The following pruning treatments were studied in mature `Bluecrop' (1996-2000) and `Berkeley' (1996-98) plants: 1) “conventional” pruning with removal of unproductive canes, thinning of 1-year-old shoots at the base of the bush, and removal of any unproductive wood or thinning of excessive fruiting wood near the top of the bush, as required; 2) “speed” pruning involving removal of one or two of the most unproductive canes at the base of the bush; and 3) “un-pruned” where no pruning was done for the length of this study. Conventional pruning took an average of 6.4 min/plot, while speed pruning saved 88.8% time. There was no pruning treatment effect on the percentage of fruit buds in `Berkeley' (42%) or `Bluecrop' (34%) or percent fruit set (70% to 90%, depending on cultivar and year) in any year. Un-pruned plants of both cultivars had significantly greater yield than conventionally pruned plants, depending on the year, while speed pruning generally resulted in intermediate yields. Un-pruned and speed-pruned plants produced berries that were 19% to 27% smaller than conventionally pruned plants, depending on year. The fruit harvest season of un-pruned plants began 3 to 5 days later and lasted a week longer than that of conventionally pruned plants. The harvest efficiency of un-pruned plants was reduced as much as 51% in the later years of this study and was most closely correlated with berry weight. Conventionally pruned plants had a significantly higher percentage of the above-ground dry weight allocated to 1-year-old wood and crown than un-pruned plants. In `Bluecrop', N concentration tended to be higher in the crown of conventionally pruned plants than in un-pruned or speed-pruned plants. Conventionally pruned `Bluecrop' plants had significantly higher concentrations of K and P and lower N than un-pruned plants and `Berkeley' had lower concentrations of N, than un-pruned plants. Results indicate that not pruning mature plants may be an option in the short-term, but may have undesirable effects for long-term sustainability.

Free access

Ahmed El-Shiekh, David K. Wildung, James J. Luby, Kay L. Sargent, and Paul E. Read

Plants of `Northblue' blueberry, propagated in tissue culture (TC) or from softwood, single-node cuttings (ST), were evaluated in field plantings established in 1984 at Becker and Grand Rapids, in central and northern Minnesota, respectively. Plantings were observed from 1987 through 1994 to determine the persistence of such effects as increased vigor, more spreading growth habit, and higher yield observed for TC plants during the initial 3 years after planting. TC plants had significantly higher yields at Grand Rapids in 1989 and 1994. At Grand Rapids, the consistently greater plant spread (bearing area) of TC plants resulted in higher yields of TC plants over all years combined. At Becker, TC and ST plants did not differ for plant height or spread after 10 years and, in 2 of 5 years, ST plants had heavier average berry weights. At Grand Rapids, TC plants did not differ consistently in height, or subjective ratings of the amount of bloom or crop. The effects of propagation method on yield and growth habit of `Northblue' are limited to early years in warmer locations, but can be of longer-term significance in colder areas with shorter growing seasons and lower winter temperatures, where plant spread is a more important factor than plant height in determining yield.

Free access

Ann Marie Connor, M. Joseph Stephens, Harvey K. Hall, and Peter A. Alspach

Variance components and narrow-sense heritabilities were estimated for antioxidant activity (AA), total phenolic content (TPH), and fruit weight in red raspberry (Rubus idaeus L.) fruit from offspring of a factorial mating design. Forty-two full-sib families utilizing seven female and six male parents were evaluated in each of two years in Motueka, New Zealand. In a single year, values within individual half-sib families ranged as widely as 25.3-79.4 μg·g-1 fruit for AA, 205-597 mg/100 g fruit for TPH, and 1.06-7.69 g for fruit weight. Analyses of variance for these three variates demonstrated significant parental source variation in both individual and combined year analyses. For AA and TPH, female parental effects accounted for ≈7% to 19% of total variation, while male effects accounted for ≈6% to 8%. A partially pigment deficient R. parvifolius L. derivative female parent accounted for some of these differences. Female × male parent interaction was not significant for AA and TPH and was marginally significant for fruit weight in combined year analysis. Year had a significant effect on the overall mean AA and TPH, but contributed less than genetic effects to the overall variation in all three traits. Interactions of year with genetic effects were not statistically significant for AA or TPH, indicating that between-year rank or scale changes among families were negligible. The largest proportion of variation was found within rather than among full-sib families. However, variation among plots within full-sib families accounted for 12% to 19% of total variation, indicating environmental differences accounted for some of the observed within-family variation in AA and TPH. Antioxidant activity and TPH were highly phenotypically correlated (r = 0.93); their genetic correlation (r = 0.59) implies that substantial additive genetic factors underlie the phenotypic correlation, but that nonadditive genetic or environmental influences are also important. Both AA and TPH were weakly negatively phenotypically correlated with fruit weight (r = -0.34 and -0.33, respectively), but the corresponding genetic correlations were close to zero. Thus, selection for both high AA or TPH and high fruit weight is possible. Narrow-sense heritability estimates based on variance components from combined year data were h 2 = 0.54, 0.48, and 0.77 for AA, TPH, and fruit weight, respectively. These estimates imply a rapid response to selection is possible.

Free access

Ann Marie Connor, Chad E. Finn, and Peter A. Alspach

Antioxidant compounds absorbed from our diet are thought to have a role in preventing chronic diseases that result from oxidative damage. Berry fruit have high levels of antioxidants, and further increases in antioxidant activity (AA) might be possible through breeding. We determined the AA, total phenolic content (TPH), and fruit weight in 16 blackberry and hybridberry (Rubus L.) cultivars harvested in New Zealand and Oregon in 2002 and 2003, to assess genetic and environmental variation. Both AA and TPH varied significantly between years within location, but not among cultivars or between locations per se. However, cultivar interactions with both location and year within location contributed to variation in both variates. In contrast, both cultivar and location contributed to variation in fruit weight, but years within location did not. However, the cultivar × year within location interaction was significant for this trait. Variance component distributions confirmed that cultivar and location effects together contributed little (<20%) to the total variation in either AA or TPH, while cultivar × environment interactions accounted for >50% of total variation in these traits. Cultivar and location effects together contributed ≈70% of the total variation observed in fruit weight. Phenotypic correlations were significant between AA and fruit weight (r = -0.44), and between TPH and fruit weight (r = -0.51). When adjusted for fruit weight, analyses for AA and TPH demonstrated that cultivar effects approached significance (P = 0.06) and accounted for ≈25% of total variance, while location effects accounted for none. Although the cultivars in this study had diverse interspecific backgrounds, utilization of various Rubus species in blackberry and hybridberry breeding is not uncommon, and our results demonstrating significant cultivar × environment interaction for AA and TPH should be applicable to breeding for high AA genotypes.

Free access

D.C. Ferree, D.M. Scurlock, and J.C. Schmid

`Seyval blanc' and `Vidal blanc' grapevines (Vitis sp.) grown in large containers were root-pruned at different severities and/or stages of development and the effects on growth of both cultivars and fruiting of `Seyval blanc' were determined. As the severity of root pruning increased, stomatal conductance (g s) and transpiration (E) decreased and the number of wilted leaves increased in both cultivars. In both cultivars, root pruning reduced net photosynthesis (Pn) and E for as long as 18 to 20 days, as well as total leaf area and dry weight of leaves and petioles plus tendrils. The reductions were proportional to the degree of root pruning. A similar pattern existed for cane and root tissue of `Vidal blanc'. As the severity of root pruning increased, berry and cluster weight, and titratable acidity (TA) of `Seyval blanc' decreased. There was no effect of root pruning on berries per cluster, soluble solids content (SSC), or pH of the juice. No interaction was significant for any factor between time of root pruning and fruiting measured on `Seyval blanc' vines. Root pruning at bloom reduced leaf area, number of leaves, and dry weight of petioles, trunks, and canes. Root pruning at veraison had no effect on any vegetative or fruit parameters. Fruiting `Seyval blanc' vines had less leaf area and smaller petiole and cane dry weights than did nonfruiting vines.

Full access

Justin Morris, Gary Main, Renee Threlfall, and Keith Striegler

). Minimal pruning with and without skirting of ‘Chancellor’ grapevines resulted in higher yields than hand pruning, but with lower cluster weights, fewer berries per cluster, lower berry weight, and lower grape soluble solids ( Reynolds and Wardle, 2001

Free access

Jeffrey G. Williamson and D. Scott NeSmith

used the nonionic surfactant X-77 at 0.25% (v/v). After flowering was complete, plants were moved to a greenhouse for the remainder of the experiment. Percent fruit set and average individual berry weight were determined for each treatment. Fruit set

Free access

Michael J. Costello and W. Keith Patterson

and veraison or harvest increased concentration of anthocyanins and decreased berry diameter (but not berry weight), but only with a deficit intensity of 26% or less but not that of ≈50% of the standard irrigation. On cultivated grape in California, it