Search Results

You are looking at 1 - 10 of 92 items for :

  • "arbuscular mycorrhizal fungi" x
Clear All
Free access

Marjorie E. Ross* and Emily E. Hoover

Cultivar may cause variation in arbuscular mycorrhizal fungi (AMF) colonization levels leading to differences in shoot growth and runner formation, and in pathogen control in strawberries. However, a clear consensus has not been reached regarding the degree to which cultivar affects the formation of the symbiosis or its functioning. The study was conducted on four commercial strawberry farms in Minnesota and Wisconsin to compare, within a farm, mycorrhizal colonization and plant response among three strawberry cultivars: `Winona', `Anapolis' and `Jewel'. At each farm, two 6 × 6 meter plots of each cultivar were randomly selected. On each of three sampling dates, 4 whole plants and soil samples were collected from these plots in the 2003 field season. Roots were separated from shoots and leaves, and fresh and dry weights were taken. Leaves and soil were dried, weighed, and submitted for nutrient analysis. Soil nutrient analyses include phosphorus (Bray P), potassium, pH, buffer pH and organic matter. Leaf tissue analyses include P, K, Ca, Mg, Na, AL Fe, MN Zn, Cu, B, Pb, Ni, Cr, and Cd. Roots were collected, frozen, and prepared for scoring using methods adapted from Koske and Gemma (1989). Presence of mycorrhizal colonization is being scored using the methods of McGongle et al. (1990). Levels of mycorrhizal colonization among different strawberry cultivars will be compared. We will also use biomass measurements, to determine mycorrhizal effects on plant growth among different cultivars. Soil and leaf analysis data will be used to determine effects of AMF on plant nutrition and compare effects among cultivars.

Free access

F. Morin, J.A. Fortin, C. Hamel, R. L. Granger and D. L. Smith

A 12-week greenhouse experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal fungi on four apple (Malus domestica Borkh) rootstock cultivars: M.26, Ottawa 3 (Ott.3), P.16, and P.22. The plants were grown in soil from an apple rootstock nursery, containing high levels of extractable P (644 kg Bray/1 ha-1). Inoculation treatments were Glomus aggregatum Shenck and Smith emend. Koske, G. intraradix Shenck and Smith, and two isolates of G. versiforme (Karsten) Berch, one originally from California (CAL) and the other one from Oregon (OR). Mycorrhizal plants were taller, produced more biomass, and had a higher leaf P concentration than the uninoculated control plants. Mycorrhizal inoculation also significantly increased the leaf surface area of `M.26' and `Ott.3' compared to the control. Glomus versiforme(CAL)-inoculated plants generally had the best nutrient balance, the greatest final height and shoot biomass, and produced an extensive hyphal network. All the mycorrhizal plants had similar percentages of root colonization, but the size of the external hyphal network varied with fungal species. Glomus versiforme(OR) had a larger extramatrical phase than G. aggregatum and G. intraradix. Mycorrhizal efficiency was associated with a larger external hyphal network, but showed no relation with internal colonization. Despite the high P fertility of the soil used, growth enhancement due to mycorrhizal inoculation was attributed to improved P nutrition.

Free access

Andrew D. Cartmill, Fred T. Davies Jr., Alejandro Alarcon and Luis A. Valdez-Aguilar

Sustainable horticultural production will increasingly have to rely on economically feasible and environmentally sound solutions to problems associated with high levels of bicarbonate (HCO - 3) and associated high pH in irrigation water. The ability of arbuscular mycorrhizal fungi (AMF; GlomusZAC-19) to enhance plant tolerance to HCO3 - was tested on the growth, physiology and nutrient uptake of Rosamultiflora Thunb. ex J. Murr. cv. Burr (rose). Arbuscular mycorrhizal colonized and noninoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mm HCO - 3. Increasing HCO - 3 concentration and associated high pH and electrical conductivity (EC) reduced plant growth, leaf elemental uptake and acid phosphatase activity (ACP), while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO - 3 as indicated by greater plant growth, leaf elemental uptake (N, P, K, Ca, Fe, Zn, Al, Bo), leaf chlorophyll content, higher mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally lower wall-bound ACP (at 2.5 mm HCO3 -), and higher soluble ALP (at 10 mm HCO3 -). While AMF colonization (arbuscules, vesicles, and hyphae formation) was reduced by increasing HCO - 3 concentration, colonization still occurred at high HCO - 3. At 2.5 mm HCO3 -, AMF plant growth was comparable to plants at 0 mm HCO3 -, further indicating the beneficial effect of AMF for alleviation of HCO3 - stress.

Free access

Victoria Estaún, Amelia Camprubí, Cinta Calvet and Jorge Pinochet

This paper reports the effects of inoculation with arbuscular mycorrhizal fungi on early plant development, field establishment, and crop yield of the olive (Olea europaea L.) cultivar Arbequina. The response of olive plants to the fungi Glomus intraradices (Schenck and Smith) and G. mosseae (Nicol.& Gerd.) Gerdemann & Trappe in different potting mixes was studied in two different nursery experiments. Pre-inoculation with selected arbuscular mycorrhizal fungi prior to transplanting in the field improved plant growth and crop yield up to three years after inoculation. G. intraradices was more efficient at promoting plant growth than both G. mosseae and the native endophytes present in the orchard soil. Inoculation at the time of transplanting enhanced early plant growth in all the field situations studied. Diminishing mycorrhizal effects over time resulted from natural colonization of noninoculated seedlings and related to the native arbuscular mycorrhizal (AM) fungal population of the field soil. Early inoculation of olive seedlings enhances early plant development and crop productivity of olive trees.

Free access

C.F. Scagel

Many changes in metabolism are known to occur during adventitious root formation, including changes in amino acids, proteins, and carbohydrates. The influence of arbuscular mycorrhizal fungi (AMF) on adventitious rooting of rose was tested by inoculating four cultivars with Glomus intraradices Schenck & Smith. Changes in cutting composition were measured during the initial stages of adventitious root formation. Although there were cultivar-specific differences in response, AMF inoculation generally increased the biomass and number of adventitious roots on cuttings before root colonization was detected. Application of rooting hormone increased this effect. Inoculation with AMF washings also increased the root biomass and number, but only when cuttings were treated with hormone. Changes in cutting composition in response to AMF were detected at 7 to 14 days. Differences in protein concentrations in response to AMF or hormone application were similar, while differences in amino acid and reducing sugar concentrations were not. Concentrations of proteins and amino acids in cuttings at the beginning of the experiment were positively correlated with adventitious rooting, while concentrations of reducing sugars and nonreducing sugars were not correlated with rooting. These results suggests that nitrogen-containing compounds play an important role in adventitious rooting, and that changes in amino acids associated with AMF inoculation were potentially different than those that occurred when cuttings were treated with rooting hormone alone. Carbohydrate concentrations in cuttings were not strongly related to initiation of adventitious roots, but reducing sugar may play a role in regulating part of the response of cuttings to AMF. The response of rose cuttings prior to colonization by G. intraradices suggests that AMF-plant signaling events occurred prior to rooting.

Free access

Lucila Amaya Carpio, Fred T. Davies Jr. and Michael A. Arnold

This research determined the effects of two commercial arbuscular mycorrhizal fungi (AMF) inocula, organic slow-release fertilizer (OSRF), and inorganic controlled-release fertilizer (ICRF) on plant growth, marketability and leachate of container-grown Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) grown outdoors under high temperature summer conditions (maximum container media temperature averaged 44.8 °C). Uniform rooted liners were planted into 7.6-L pots containing a pasteurized substrate [pine bark and sand (3:1, by volume)]. The AMF treatment consisted of BioterraPLUS and MycorisePro and a noninoculated control (NonAMF). Fertilizer treatments included OSRF [Nitrell 5-3-4 (5N-1.3P-3.3K)] and ICRF [Osmocote 18-7-10 (18N-3.0P-8.3K)]. OSRF was tested at three rates: 8.3, 11.9, and 16.6 kg·m-3, which were respectively, 70%, 100%, and 140% of manufacturer's recommended rate, while ICRF was tested at two rates: 3.6 and 7.1 kg·m-3, which were, respectively, 50% and 100% of manufacturer's recommended rate. The P levels were equivalent between 70% and 140% OSRF and, respectively, 50% and 100% ICRF. Greatest growth [leaf, shoot, flower bud, and flower number; root, leaf, shoot, and total plant dry mass (DM); growth index; leaf area]; N, P, and K uptake; leaf chlorophyll; and plant marketability occurred with BioterraPLUS plants at 50% and 100% ICRF rate and MycorisePro at the 100% ICRF rate. Greater plant growth occurred with increasing fertility levels; however, plants at the 140% OSRF (same P level as 100% inorganic SRF) had poorest growth, in part due to high temperature. While AMF enhanced growth of plants with OSRF at all concentrations, better growth and marketability occurred with ICRF than OSRF plants inoculated with AMF. AMF plants at the 50% ICRF had comparable or better growth, higher N, P, and K and marketability than NonAMF plants at either 100% OSRF or ICRF. AMF were able to survive under high temperature and colonize plants grown from low to high fertility conditions. AMF inoculation had minimal effect on container leachate (pH and electrical conductivity). However, the larger-sized AMF plants at 100% ICRF rate had greater total leaf tissue N, P, and K, suggesting greater nutrient utilization—thus reduced potential risk for leachate runoff.

Free access

Rhoda Burrows and Francis Pfleger

Growing a plant host in association with other plant species (i.e., increasing diversity) changes the composition of the associated arbuscular–mycorrhizal (AM) fungal community. We tested whether this alteration in the fungal community causes significant differences in the growth of Schizachyrium scoparium L. (Little Bluestem, a C4 grass) or Lespedeza capitata L. (Bush clover, a legume). Seedlings were transplanted into pasteurized soil inoculated with soil from monoculture plots of Schizachyrium or Lespedeza, respectively, vs. plots containing one, seven, or 15 additional plant species. Soil washes from a composite of the plots were added to all pots, including non-inoculated controls, to reduce differences in the non-AM microbial communities. Spore counts of the inoculum from Lespedeza plots showed increasing numbers of AM fungal spores and species richness with increasing plant diversity; this was not true with the Schizachyrium plots, possibly because Schizachyrium may be a better host to more species of AM fungi than Lespedeza. Both Schizachyrium and Lespedeza responded to inoculation with increased growth compared to non-inoculated controls. Tissue analyses of both species showed that inoculation increased the percentage of Cu, and lowered the percentage of Mn compared to control plants. Schizachyrium showed no significant differences in growth due to inoculum source (1-, 2-, 8-, or 16-species plots); while Lespedeza showed increases in root and shoot weights with increasing source-plot diversity.

Free access

Rhoda L. Burrows* and Ismail Ahmed

Fungicides applied as soil drenches affect arbuscular-mycorrhizal (AM) fungal colonization of plant roots to different degrees, depending on the chemical used. However, the effect of fungicides applied as seed treatments has been less studied, and is of particular interest to growers who want to encourage beneficial mutualisms while protecting seedlings against pathogens. We tested the effects of four common seed treatments, Apron (mefenoxam), Thiram, Raxil (tebuconzaole), and Captan on colonization of `Superstar' muskmelon roots by the AM fungus Glomus intraradices in the greenhouse. By 30 days after planting, colonization was very high (>90% root length) for all treatments, with relatively minor (<10%) differences in percent length root with AM hyphae. The Apron seed treatment had the highest percent root length with hyphae, but the lowest amount of vesicles, while roots from Raxil and Captan-treated seeds had the lowest hyphal colonization and highest vesicle formation. Myconate ®, a commercial formulation of formononetin, an isoflavone previously shown to increase AM colonization, significantly increased the percent colonization of roots from the Raxil treatment, but not other treatments. Myconate also increased vesicle numbers in all but the Captan treatments, but not significantly.

Full access

C.F. Scagel

We assessed whether addition of arbuscular mycorrhizal fungus (AMF) inoculum or rhizosphere organisms from AMF inoculum alters aspects of flowering, corm production, or corm quality of harlequin flower (Sparaxis tricolor) for two growth cycles after inoculation. Using pasteurized and nonpasteurized growth medium, plants were inoculated with either inoculum of the AMF, Glomus intraradices, or washings of the inoculum containing rhizobacteria. Shoots of plants inoculated with AMF emerged 2 days earlier than shoots on noninoculated plants or plants inoculated with inoculum washings. Flowers on AMF-inoculated plants opened 7-8 days earlier and plants produced more flowers per plant and per inflorescence than noninoculated plants. AMF-inoculated plants partitioned a higher proportion of biomass to cormel production than to daughter corms and had higher concentration and contents of zinc, sulfur, nitrogen, amino acids, and carbohydrates than corms from noninoculated plants. The rhizosphere organisms associated with the AMF inoculum influenced several measures of plant development, growth, and corm production suggesting that there are organisms associated with our AMF inoculum that have beneficial effects on the growth and productivity of harlequin flower. While inoculation with AMF can promote shoot emergence, leaf production, and flower production of harlequin flower, inoculation also alters aspects of biomass partitioning and corm composition that play an important role in the production of this crop for corms and cormels.

Free access

Cinta Calvet, Amèlia Camprubí and Rodrigo Rodríguez-Kábana