Search Results

You are looking at 1 - 10 of 834 items for :

  • "application rate" x
Clear All
Full access

Heping Zhu, James Altland, Richard C. Derksen and Charles R. Krause

application rates for use in field-grown tree liner production. In response to an onset of pest infestations, liner spray applicators must make calculated decisions within a very narrow time window on how much pesticide and spray volume will be needed for

Full access

Qiang Zhu, Yuncong C. Li, Rao S. Mylavarapu, Kelly Morgan and Mingjian Geng

availability with different P application rates, 2) establishing STP critical level, and 3) calibrating the P requirement for tomato production on a calcareous soil. Materials and Methods A 2-year field trial, during Winter 2014 (29 Oct. 2014–24 Mar. 2015) and

Free access

Erin Agro and Youbin Zheng

nursery leachate and runoff. Consequently, when optimal fertilizer application rates are used, crops will perform at their best and environmental impacts will be minimized ( Cabrera, 2003 ). Controlled-release fertilizers have become the principal method

Full access

John C. Majsztrik, Andrew G. Ristvey, David S. Ross and John D. Lea-Cox

from a six-state survey of container nursery operations to calculate the potential impact of N runoff. However, application rates and runoff volumes were not a part of this study. Water usage data were reported by Hutson et al. (2004) , but are not

Full access

Marco Volterrani, Nicola Grossi, Monica Gaetani, Lisa Caturegli, Aimila-Eleni Nikolopoulou, Filippo Lulli and Simone Magni

characteristics to identify the products or application rates that are potentially harmful to plants. Materials and methods The trial was carried out at the Department of Agriculture, Food and Environment of the University of Pisa (lat. 43°40’N, long. 10°19’E, 6 m

Free access

G. Stephen Crnko, Edward W. Bush and Allen D. Owings

A study was initiated to determine the effects of fall fertilization, specifically N application rate and additions of supplemental K on the production of woody ornamental shrub species. The influence of two slow-release sources of K (4- and 8-month) in the form of K2SO4, three K application rates (0, 1, 2 lb/yd3), and four incorporated application rates of N (0, 1, 2, and 3 lb/yd3) from Osmocote Plus+ 15-9-11 were evaluated on the growth of `Fisher Pink' Indian azalea, glossy abelia, and `Tuscarora' crape myrtle. Growth of `Fisher Pink' azalea, as determined by shoot height and shoot width, increased as N rate increased from 1 to 3 lb/yd3 when compared to the control. The resulting growth index improved at the 2 and 3 lb/yd3 N rate when compared to the 0 and 1 lb/yd3 N rates. Height and width of glossy abelia at the 1 lb N rate with or without supplemental K applications increased when compared to some glossy abelia at the 3 lb N rate (primarily those with supplemental K). Glossy abelia at the 2 lb/yd3 N rate with 2 lb/yd3 N from 4-month 0-0-46 had significantly greater shoot dry weight when compared to the 3 lb/yd3 N rate with 2 lb/yd3 N from 8-month 0-0-46. The 1 to 3 lb/yd3 N application rate had more of a response on growth index, visual quality, and visual color on `Tuscarora' crape myrtle as compared to the 0 lb/yd3 N rate. In this study, the potential influence of supplemental K applications on plant growth was mostly evident for glossy abelia at the 2 lb/yd3 N rate and was not evident on azalea or crape myrtle.

Free access

Robert H. Stamps

One of the most difficult times to balance crop nitrogen (N) requirements with concerns about nitrate-N leaching occurs during crop establishment, when root systems are poorly developed and not widely distributed in the growing medium. This dilemma can be exacerbated when producing a slow-growing plant such as leatherleaf fern (Rumohra adiantiformis [Forst.] Ching) on sandy soils in shadehouses in areas with significant rainfall. Rhizomes were planted in 36 drainage lysimeters containing Tavares fine sand located in a shadehouse. Nitrogen fertilizer was applied at nine rates using liquid and/or controlled-release fertilizer. Nitrogen application rates were varied as the rhizomes became established and spread into unplanted areas of the lysimeters. Irrigation and rainfall were monitored and the amount of water not lost to evapotranspiration was determined. Nitrogen (ammoniacal, nitrate/nitrite, total Kjeldahl) concentrations in leachate collected below the rootzone were determined. Stipe sap nitrate and frond total Kjeldahl nitrogen (TKN) were determined to try to develop a production monitoring technique. Initially, only leachate samples from controlled-release fertilizer plots treated at 21 and 42 kg of N/ha per year and liquid fertilizer at 28 kg of N/ha per year were consistently below the maximum contamination level (MCL) of 10 mg·L–1. As the fern became established, leachate nitrate/nitrite-N concentrations from higher N application rate treatments also remained below the MCL. Leachate N concentrations decreased as rainfall increased. Fern growth increased with increasing N application rate. Stipe sap nitrate-N and frond TKN concentrations were not well-correlated during establishment.

Full access

Stacy A. Adams, Ellen T. Paparozzi and W.W. Stroup

`Dark Red Annette Hegg' poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in a 1 peat : 1 perlite : 1 vermiculite medium using a pinched production schedule with varying N and S fertilizer application rates. Fifty-six treatments consisting of eight N levels (100 to 275 mg·L−1 in 25-mg·L−1 increments) and seven S levels (0 to 75 mg·L−1 in 12.5-mg·L−1 increments) were supplied. Other required nutrients were supplied at commercial recommendations for all treatments. Foliage of each plant was evaluated quantitatively by chromometer readings every 3 weeks. Marketability was determined by sensory evaluations from commercial producers, retailers, and consumers. Results indicated distinct color differences (hue, chroma, value) between S levels of 0 and 12.5 mg·L−1 and a slight difference between S at 12.5 and 25 mg·L−1. The foliage of plants receiving 0 S was lighter, more vivid, and more yellow-green in color. As N levels increased, there was a linear response; foliage became more green, darker, and more dull. Commerical and consumer evaluators rated plants that received S at 0 or 12.5 mg·L−1 at all N levels and plants receiving N at 100 mg L−1 as unmarketable. This research indicates that `Annette Hegg' poinsettia requires S at a minimum of 25 mg·L−1 and N at a minimum of 125 mg·L−1 for commercial acceptance, and commercial N application rates may be greatly reduced when adequate S is supplied.

Free access

Pascal Braekman, Dieter Foqué, Marie-Christine Van Labeke, Jan G. Pieters and David Nuyttens

furthermore reveals that almost all growers are convinced that high application rates and spray pressures are indispensable to obtain a satisfactory coverage and sufficient penetration of the often dense crop canopies. This survey also revealed that the

Free access

Larry R. Parsons, T. Adair Wheaton and William S. Castle

Citrus trees in an experimental planting responded well to high application rates of reclaimed water. Irrigation treatments included annual applications of 400 mm of well water and 400, 1250, and 2500 mm of reclaimed water. The effects of these irrigation treatments on two citrus cultivars (`Hamlin' orange and `Orlando' tangelo) combined with four rootstocks were compared. Growth and fruit production were better at the higher irrigation rates. The concentration of soluble solids in juice was diluted at the highest irrigation rate, but total soluble solids per hectare increased due to the greater fruit production. Average soluble solids/ha production was >15% higher at the 2500-mm rate than the 400-mm reclaimed water rate. While fruit soluble solids were usually lowered by higher irrigation, the reduction in fruit soluble solids observed on three of the rootstocks did not occur in trees on Carrizo citrange. Trees on Cleopatra mandarin grew similarly at the different irrigation rates, but canopy volume of trees on Swingle citrumelo was significantly smaller at the 400 mm rate than at the 2500 mm rate. Fruit peel color score was lower but juice color score was higher at the highest irrigation rate. Weed pressure increased with increasing irrigation rate, but was controllable. Both juice and fruit soluble solids were higher on Swingle citrumelo and lower on Cleopatra mandarin rootstock. Total soluble solids/ha, solids/acid ratio, and juice color were higher on Swingle rootstock. Reclaimed water, once believed to be a disposal problem in Florida, can be an acceptable source of irrigation water for citrus on well drained soils at rates up to twice the annual rainfall.