Search Results

You are looking at 1 - 10 of 420 items for :

  • "ammonium nitrate" x
  • All content x
Clear All
Full access

Lijuan Xie, Deying Li, Wenjuan Fang, and Kirk Howatt

. Table 5. Quantum yield of photosynthesis system II–mediated electron transport of creeping bentgrass treated with mesotrione in 2007 and 2008 as affected by different rates, timings, and concentrations of urea ammonium nitrate. In conclusion, mesotrione

Free access

Hitoshi Ohara*, Marom Ungsa, Katsuya Ohkawa, Hiroyuki Matsui, and Martin J. Bukovac

The effects of ammonium nitrate (AMN) on the penetration of Gibberellin A3 (GA3) into berries of `Kyoho' (Vitis labruscana Bailey) grape during berry development were studied. Treatment solutions of GA3 (100 ng·μL-1) and GA3 + AMN (20 millimolar concentration) were applied to the surface of grape berries under field conditions. The amount of GA3 penetrated was assayed using dwarf rice (Oryza sativa L., cv. Tan-ginbozu). At full bloom, the addition of AMN significantly enhanced GA3 penetration 24, 48 ad 72 hours after application by 13%, 16% and 21% of the applied GA3, respectively, representing a 1.7- to 2.4-fold increase over GA3 alone. At 4 weeks after full bloom (WAFB) at 24 hours after application, 20% of the applied GA3 penetrated in the presence of AMN compared to 15% in the absence of AMN. From varaison (7 WAFB) to maturity (10 WAFB), GA3 penetration decreased, from 6% to 2%, respectively, in the presence of AMN, and from 3% to 1% in the absence of AMN. The addition of AMN to the GA3 solution increased GA3 penetration relative to GA3 alone at all berry developmental stages. On the other hand, Cuticular wax density on the berry surface at 4 WAFB was 1.10 μg·mm-2, 5.8-fold greater than at full bloom (0.19 μg·mm-2). The thickness of the epidermal tissue doubled during the first 2 WAFB, but was maintained almost constant over the next 6 weeks. GA3 penetration was more closely related to the cuticular wax levels than the epidermal tissue thickness.

Free access

Royal G. Fader and Martin J. Bukovac

The plant cuticle is the prime barrier to penetration of foliar-applied plant growth regulators (PGR). Spray additives of various chemistries are frequently included in a tank mix to increase performance of PGRs. We have reported that urea and ammonium nitrate (AN) enhance transcuticular penetration of 14C-labeled NAA (pKa 4.2) from aqueous droplets (pH 5.2) and their subsequent deposits through enzymatically isolated tomato fruit cuticular membranes (CM). Studies on effects of Triton × surfactants on AN-enhanced NAA penetration showed an additional 25% increase in NAA penetration and the AN:surfactant interaction was significant. Also, some alkylamine hydrochlorides increased NAA penetration. Studies comparing NAA penetration through tomato and pepper fruit and Citrus leaf CM in the presence of 8 mM AN or 8 mM ethylamine HCl showed that all three species exhibited the same trend for penetration at 120 h: ethylamine HCl > AN > NAA only. Comparative NAA penetration for CM of the three species was pepper > Citrus > tomato, with significant differences (P > 0.006) in NAA penetration, as indexed by initial slope and penetration after 120 h. On addition of AN, NAA penetration was greater (range 3% to 40%) for Citrus and pepper CM than tomato CM. When ethylamine HCl was added, NAA penetration through Citrus and pepper CM was less (–37 and –27%, respectively) than tomato CM as measured by the initial slope, but 6% and 11%, respectively, more than tomato CM for penetration after 120 h. The differences in NAA penetration among the three species cannot be explained by cuticle thickness, since pepper and tomato CM are 2.5- to 3.5-fold thicker than Citrus CM. We have suggested that the enhanced NAA penetration mediated by AN and ethylamine HCl (and other alkylamine HCl examined) may be related to their hygroscopic properties leading to greater deposit hydration. The significance of the differences among the species CM and surfactant-enhanced NAA penetration will be discussed, in relation to diffusion in the non-living, non-metabolic plant cuticle.

Free access

Murray Clayton, William V. Biasi, I. Tayfun Agar, Stephen M. Southwick, and Elizabeth J. Mitcham

`Bing' sweet cherry (Prunus avium L.) trees were treated with hydrogen cyanamide (CH2N2) or calcium ammonium nitrate (CaNH4NO3) during dormancy, or gibberellic acid (GA3) 26 days before harvest during three consecutive years. Fruit were evaluated at harvest for sensory taste quality using twenty trained panelists sampling for firmness, sweetness, tartness, and cherry flavor. Nondestructive instrumental firmness preceded destructive sensory firmness on the same untreated and GA3-treated cherries in one year when used as a supplementary evaluation. Sensory firmness was consistently higher in GA3 fruit and to a lesser extent in CH2N2 fruit than in CaNH4NO3 and untreated fruit. Instrumental firmness of GA3 fruit did not increase significantly compared with untreated fruit yet instrumental firmness of each treatment correlated relatively well with perceived sensory firmness. Sensory sweetness and cherry flavor scored very similarly, yet both attributes simultaneously varied between treatments across the years. Perceived sensory tartness of treated fruit was variable among years; yet, on average, was rated among treated and untreated fruit as similar. Under the assumption that elevated sensory firmness, sweetness, and cherry flavor intensity reflects improved sweet cherry quality, GA3 fruit were rated of higher quality than untreated fruit given their increased firmness and similar or occasionally elevated sweetness and cherry flavor intensity. CH2N2 fruit maintained quality similar to that of untreated fruit, despite often having marginally higher firmness, due to similar or reduced ratings for sweetness and cherry flavor intensity. Notwithstanding similar firmness between CaNH4NO3 and untreated cherries, sensory quality of CaNH4NO3-treated cherries was reduced due to their often-diminished levels of perceived sweetness and cherry flavor.

Free access

Murray Clayton, William V. Biasi, I. Tayfun Agar, Stephen M. Southwick, and Elizabeth J. Mitcham

During three consecutive years, 'Bing' sweet cherry (Prunus avium L.) trees were treated during dormancy with the dormancy-manipulating compounds, CH2N2 or CaNH4NO3, or were treated with the plant growth regulator GA3 at straw color development. Fruit of a range of maturities, based on skin color, were evaluated for quality following harvest and simulated transit and market storage conditions. At comparable maturities, CH2N2 and GA3 fruit were of similar firmness and were consistently firmer than CaNH4NO3-treated and untreated fruit across years, storage regimes, and maturities. CaNH4NO3 and untreated fruit were of similar firmness. CH2N2-treated cherries were larger than fruit of other treatments, but only marginally with respect to variation in fruit size between years. Contraction of fruit diameter occurred after 3 days storage, but ceased thereafter up to 11 days storage. Soluble solids and titratable acidity varied between years, storage regimes, and maturities. Strong interactions of treatment and year concealed possible treatment effects on these indices. GA3 fruit contained fewer surface pits in one year while CH2N2 fruit suffered less shrivel in another. The earlier harvest date for CH2N2 fruit often avoided higher field temperatures and the resulting promotion of postharvest shrivel. Pitting and shrivel were more prevalent in stored fruit. Brown stem discoloration developed in storage, occurring most frequently in mature fruit, although methyl bromide-fumigated fruit were particularly susceptible. This disorder was more common in GA3 fruit during years of high incidence. Chemical names used: gibberellic acid (GA3); calcium ammonium nitrate (CaNH4NO3); hydrogen cyanamide (CH2N2).

Free access

K.G. Weis, S.M. Southwick, J.T. Yeager, M.E. Rupert, R.E. Moran, J.A. Grant, and W.W. Coates

In continuing trials (1995-current), we have used a variety of treatments to overcome inadequate chilling, coordinate bloom, improve leaf out and cropping, and advance/coordinate maturity in sweet cherry, cv. Bing. Treatments have included hydrogen cyanamide (HCN, Dormex) and various surfactants or dormant oils combined with calcium ammonium nitrate (CAN17). Chill hour accumulation, (required chilling for `Bing' = 850 to 880 chill hours) has varied greatly in each dormant season from 392 (Hollister, 1995-1996) to adequate, depending both on the season and location (central valley vs. coastal valley). In 1998, 4% HCN advanced budbreak significantly compared to any other treatment, although other chemical treatments also were more advanced than the untreated control. Dormex advanced completion of bloom 11% to 40% more than other treatments, although other dormancy-replacing chemicals were at least 16% more advanced in petal fall than the untreated control. Dormex contributed to slightly elevated truss bud death, as did 2% Armobreak + 25% CAN17. In 1998, fruit set was improved by 2% Armobreak + 25% CAN17 (79%) compared to the untreated control (50%); all other treatments statistically equaled the control. Fruit set was not improved by Dormex, although bloom was advanced by a few days in this treatment. As fruit set was increased by treatments, rowsize decreased (as did fruit weight), as expected, but no treatment resulted in unacceptable size. In 1997, fruit set was also improved by 2% Armobreak + 25% CAN17; however, fruit set was so low overall in that year that no real impact was found. In 1997 and 1998, 4% HCN advanced fruit maturity compared to other treatments, with darker, softer, larger fruit at commercial harvest. These and additional results will be presented.

Free access

Jeff S. Kuehny, Patricia C. Branch, and Felix J. Landry

Nitrate nitrogen has been recommended as the best form of nitrogen for the production of poinsettia while ammonium and urea have been reported to be deleterious to poinsettia growth. Recent studies have indicated that lower nitrogen and leaching levels will produce quality poinsettias. Poinsettias were grown with 21–7–7 Acid Special (9.15% NH4, 11.85% urea), 20–10–20 Peat-lite Special (7.77% NH4, 12.23% NO3), 15-220 plus Ca and Mg (1.5% NH4, 12.7% NO3, 0.8% urea), and 15–5–15 Excel CalMag (1.2% NH4, 11.75% NO3, 2.05% urea) applied at 200 mg·L-1. Plants were fertigated by drip irrigation with zero leachate. There were no significant differences between fertilizer treatments for plant height, width, bloom diameter, and dry weight. Electrical conductivity and pH did vary significantly between treatments; however, this did not effect plant growth. Thus, by using lower nitrogen levels and zero leachate, quality poinsettias can be grown with commercial fertilizers high in ammonium/urea or high in nitrate nitrogen, or ammonium and nitrate in combination.

Free access

Efren C. Celaya and Brenda S. Smith

A field experiment was conducted on broccoli (Taki Marathon variety) at California Polytechnic State University, San Luis Obispo to evaluate three rates of AN-20 for weed control and crop phytotoxicity. The rates were: low-40 gal./A, standard-60 gal./A, high-80 gal./A, and untreated control. Each treatment was applied to the base of the broccoli plant to avoid crop injury. Each treatment had four replications. Data collected included hoe time/plot and percent visual control. Broccoli was not injured at any rate of AN-20. It was noticed that the older weeds, greater than five-leaf stage, managed to pull through, so size of weed is crucial. On a cost-per-acre basis, the money saved on the high rate is half that of the low rate and one third that of the control. Weed control was not adequately controlled at the standard and low rates. An economic analysis was conducted, and it was found there was a savings as less labor was required to hoe the field when AN-20 had been applied.

Full access

Daniel Leskovar and Yahia A. Othman

two growing seasons; 2015 and 2016. Fig. 2. Total root length, surface area, volume, total root dry weight, and total fork number of olive cuttings grown under different N-sources and levels for two growing seasons; 2015 and 2016. AN = ammonium nitrate

Full access

Javiera Morales, Ximena Besoain, Italo F. Cuneo, Alejandra Larach, Laureano Alvarado, Alejandro Cáceres-Mella, and Sebastian Saa

NO 3 and 20 ppm N as (NH 4 ) 2 SO 4. Fig. 1. In vitro growth of Phytophthora cinnamomi mycelia (average diameter in millimeters) in Corn Meal Agar (CMA) medium combined with different nitrogen sources (ammonium nitrate, calcium nitrate, potassium