Search Results

You are looking at 1 - 10 of 17 items for :

  • "acibenzolar-S-methyl" x
Clear All
Free access

Jaimin S. Patel, Shouan Zhang and Maria I. Costa de Novaes

= acibenzolar-S-methyl. Table 3. Percent reduction of the AUDPC values of downy mildew in ASM-treated basil compared with non-treated plants. z Number of basil leaves. In Expt. 1, the number of leaves on each plant was significantly ( P < 0.05) greater in 5-, 6

Free access

Joon Lee, Jack Fry and Ned Tisserat

There is interest in identifying cultural practices that may reduce fungicide requirements of creeping bentgrass (Agrostis palustris Huds.) putting greens. Our objective was to evaluate the plant defense activator ASM in combination with 12 biostimulants for the potential to reduce dollar spot (Sclerotinia homoeocarpa F.T. Bennett) and brown patch (Rhizoctonia solani Kuhn) in a blend of `Cato: `Crenshaw creeping bentgrass during 2000 and 2001. The experimental design was a split-plot with ASM as the whole plot, and biostimulants as the subplots. ASM was applied biweekly as a.i. at 35 g·ha-1 and biostimulants were applied according to manufacturers recommendations. Sclerotinia homoeocarpa infection centers were reduced by 38% with ASM, but levels were >1500/m2 in Aug. 2000, and turf quality was unacceptable through most of the study period. No suppression of brown patch occurred with ASM. None of the biostimulants reduced dollar spot or brown patch in creeping bentgrass when compared to biweekly applications of soluble N at 4.9 kg·ha-1. Dollar spot suppression achieved with ASM warrants additional studies to determine how it might be used to reduce fungicide inputs on creeping bentgrass putting greens. Chemical name used: acibenzolar-S-methyl (ASM).

Free access

Brian A. Kahn, John P. Damicone and Raymond Joe Schatzer

Benomyl was compared with copper hydroxide, azoxystrobin, tebuconazole, acibenzolar-S-methyl, and basic copper sulfate for efficacy of cercospora leaf spot [incited by Cercospora brassicicola P. Henn] management on turnip greens [Brassica rapa L. var. (DC.) Metzg. utilis]. Treatments included various application times and were evaluated in three field experiments over 2 years. The few yield effects that occurred were not consistent between years. Copper hydroxide and basic copper sulfate were not useful alternatives to benomyl due to a combination of phytotoxicity symptoms and ineffective disease control. Inconsistent results were observed with acibenzolar-S-methyl. A single, early application of tebuconazole greatly reduced cercospora leaf spot severity relative to the control in both years. Tebuconazole may be a good alternative to benomyl if a label can be obtained. Multiple (at least two) applications of azoxystrobin may be needed to achieve the same degree of cercospora leaf spot control as would result from a single properly timed application of benomyl. Although azoxystrobin is now labeled for turnip greens, grower costs will likely increase as a result of benomyl being discontinued. Chemical names used: methyl-1-[(butylamino)carbonyl]-H-benzimidazol-2-ylcarbamate (benomyl); methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate (azoxystrobin); alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (tebuconazole); 1,2,3-benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester (acibenzolar-S-methyl).

Full access

Mark A. Ritenour, Robert R. Pelosi, Michael S. Burton, Eddie W. Stover, Huating Dou and T. Gregory McCollum

Studies were conducted between November 1999 and April 2003 to evaluate the effectiveness of compounds applied preharvest for reducing postharvest decay on many types of fresh citrus (Citrus spp.) fruit. Commercially mature fruit were harvested two different times after the compounds were applied, degreened when necessary, washed, waxed (without fungicide), and then stored at 50 °F (10.0 °C) with 90% relative humidity. Compared to control (unsprayed) fruit, preharvest application of benomyl or thiophanate-methyl resulted in significantly (P < 0.05) less decay of citrus fruit after storage in nine out of ten experiments, often reducing decay by about half. In one experiment, pyraclostrobin and phosphorous acid also significantly decreased total decay by 29% and 36%, respectively, after storage compared to the control. Only benomyl and thiophanate-methyl significantly reduced stem-end rot (SER; primarily Diplodia natalensis or Phomopsis citri) after storage, with an average of 65% less decay compared to the control. Though benomyl significantly reduced anthracnose (Colletotrichum gloeosporioides) in two of four tests with substantial (>20%) infection and phosphorous acid significantly reduced it once, thiophanate-methyl did not significantly reduce the incidence of anthracnose postharvest. The data suggests that preharvest application of thiophanate-methyl may reduce postharvest SER and total decay similar to preharvest benomyl treatments.

Free access

Joel L. Shuman* and Anthony D. Bratsch

Anthracnose fruit rot (AFR) and crown rot can cause severe economic losses on susceptible `Chandler' and `Camarosa' strawberry in Virginia: `Sweet Charlie' and `Bish' are moderately resistant to resistant. Actigard (acibenzolar-S-methyl), an inducer of systemic acquired resistance, has been effective at reducing black spot and speck on tomato, blue mold on tobacco, and fire blight on apple. The objective of this study was to determine if Actigard, when spray-applied to field-grown strawberry, can reduce AFR better than or equal to several registered fungicides. Four varieties (VAR) (Chandler, Camarosa, Sweet Charlie, and Bish) were treated with four fungicides (FUNG) (water control, azoxystrobin, chlorothalonil, and actigard). Experimental design was a split plot with FUNG as the main plot and VAR as the split plot with four replicates. Standard annual hill system practices were used throughout. Plots were inoculated three times throughout the harvest season with a conidia: water solution of 1 × 106 conidia per mL. Plots were treated with FUNG on a 14-day schedule from bloom to end of season. Plots were visually assessed for anthracnose and fruit were harvested 2× weekly and weighed into four categories: marketable, cull, fruit with anthracnose, and fruit with other diseases. Environmental conditions were conducive for anthracnose development: extended periods of rain and high relative humidity. Plots treated with water control had more AFR, other fruit rots, and higher overall disease ratings than those treated with a compound. Plots treated with actigard had the same level of AFR as did those treated with azoxystrobin. `Chandler' and `Camarosa' had considerably more AFR than `Sweet Charlie' and `Bish' had the least amount over all FUNG.

Free access

Stephen R. King, Angela R. Davis, Wenge Liu and Amnon Levi

controlling the disease ( Driver and Louws, 2002 ). Actigard (acibenzolar-s-methyl; Syngenta Crop Protection, Greensboro, NC) has shown to be effective, but only when inoculum densities are low ( Anith et al., 2004 ). Host plant resistance in tomato is

Free access

Mathews L. Paret, Aaron J. Palmateer and Gary W. Knox

groups in Florida are evaluating fungicide/bactericide rotation options for management of bacterial leaf spot on roses. Preliminary studies on the use of Acibenzolar-S-methyl, a systemic acquired resistance (SAR) inducer, that activates plant defense

Full access

Sandra E. Branham, Mark W. Farnham, Shane M. Robinson and W. Patrick Wechter

host plant resistance and the commonly used chemical bactericide acibenzolar-S-methyl found that host plant resistance was more effective at controlling bacterial blight in B. juncea ( Keinath et al., 2016 ). However, levels of resistance to Pca

Free access

Gary E. Vallad, Kenneth L. Pernezny, Botond Balogh, Aimin Wen, Jose Francisco L. Figueiredo, Jeffrey B. Jones, Timur Momol, Rosa M. Muchovej, Nikol Havranek, Nadia Abdallah, Steve Olson and Pamela D. Roberts

antibiotics (streptomycin and oxytetracycline) ( Byrne et al., 2005 ; Flaherty et al., 2000 ; Louws et al., 2001 ; Obradovic et al., 2004 , Roberts et al., 2008 ). Acibenzolar- S -methyl (ASM) (Actigard® 50WG; Syngenta Crop Protection, Greensboro, NC), an

Free access

Samuel F. Hutton, Jay W. Scott and Jeffrey B. Jones

such as acibenzolar-S-methyl (Actigard; Syngenta, Basel, Switzerland) that induce systemic acquired resistance (SAR) in the plant were effective control alternatives ( Louws et al., 2001 ), and acibenzolar-S-methyl is routinely used in northern Florida